A four-levels hierarchical wireless body sensor network (WBSN) system is designed for biometrics and healthcare applications. It also separates pathways for communication and control. In order to improve performance, a communication cycle is constructed for synchronizing the WBSN system with the pipeline. A low-power adaptive process is a necessity for long-time healthcare monitoring. It includes a data encoder and an adaptive power conserving algorithm within each sensor node along with an accurate control switch system for adaptive power control. The thermal sensor node consists of a micro control unit (MCU), a thermal bipolar junction transistor sensor, an analog-to-digital converter (ADC), a calibrator, a data encoder, a 2.4-GHz radio frequency transceiver, and an antenna. When detecting ten body temperature or 240 electrocardiogram (ECG) signals per second, the power consumption is either 106.3 mu W or 220.4 mu W By switching circuits, multi sharing wireless protocol, and reducing transmission data by data encoder, it achieves a reduction of 99.573% or 99.164% in power consumption compared to those without using adaptive and encoding modules. Compared with published research reports and industrial works, the proposed method is 69.6% or 98% lower than the power consumption in thermal sensor nodes which consist only of a sensor and ADC (without MCU, 2.4-GHz transceiver, modulator, demodulator, and data encoder) or wireless ECG sensor nodes which selected Bluetooth, 2.4-GHz transceiver, and Zigbee as wireless protocols.