The Shifting Demographic Landscape of Pandemic Influenza

被引:62
作者
Bansal, Shweta [1 ,2 ]
Pourbohloul, Babak [3 ,4 ]
Hupert, Nathaniel [5 ,6 ]
Grenfell, Bryan [2 ,7 ]
Meyers, Lauren Ancel [8 ,9 ]
机构
[1] Penn State Univ, Ctr Infect Dis Dynam, University Pk, PA 16802 USA
[2] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[3] British Columbia Ctr Dis Control, Div Math Modeling, Vancouver, BC, Canada
[4] Univ British Columbia, Fac Med, Sch Populat & Publ Hlth, Vancouver, BC, Canada
[5] Weill Cornell Med Coll, Dept Publ Hlth, New York, NY USA
[6] US Ctr Dis Control & Prevent, Preparedness Modeling Unit, Atlanta, GA USA
[7] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[8] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA
[9] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
PLOS ONE | 2010年 / 5卷 / 02期
基金
美国国家科学基金会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
HONG-KONG INFLUENZA; TRANSMISSION PARAMETERS; ASIAN INFLUENZA; MORTALITY; EPIDEMIC; SPREAD; VIRUS; AGE; SCHOOLCHILDREN; PROTECTION;
D O I
10.1371/journal.pone.0009360
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: As Pandemic (H1N1) 2009 influenza spreads around the globe, it strikes school-age children more often than adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the significant gap in age-specific infection rates. Methods and Findings: Based on a retrospective analysis of pandemic strains of influenza from the last century, we show that school-age children typically experience the highest attack rates in primarily naive populations, with the burden shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic strains of influenza are expected to shift the epidemiological landscape in exactly this way. Conclusions: Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates, and suggests that this bias may shift in coming months. These results have significant implications for the allocation of public health resources for H1N1/09 and future influenza pandemics.
引用
收藏
页数:8
相关论文
共 75 条
[1]  
ANDERSON R M, 1991
[2]  
BANSAL S, 2009, 09102008 ARX
[3]   When individual behaviour matters: homogeneous and network models in epidemiology [J].
Bansal, Shweta ;
Grenfell, Bryan T. ;
Meyers, Lauren Ancel .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (16) :879-891
[4]   A comparative analysis of influenza vaccination programs [J].
Bansal, Shweta ;
Pourbohloul, Babak ;
Meyers, Lauren Ancel .
PLOS MEDICINE, 2006, 3 (10) :1816-1825
[5]  
Barbour A., 1990, STOCHASTIC PROCESSES, P86
[6]   Cross-Protection between Successive Waves of the 1918-1919 Influenza Pandemic: Epidemiological Evidence from US Army Camps and from Britain [J].
Barry, John M. ;
Viboud, Cecile ;
Simonsen, Lone .
JOURNAL OF INFECTIOUS DISEASES, 2008, 198 (10) :1427-1434
[7]  
Barthelemy M., 2004, PHYS REV LETT, V92
[8]   Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface [J].
Beutels, P. ;
Shkedy, Z. ;
Aerts, M. ;
Van Damme, P. .
EPIDEMIOLOGY AND INFECTION, 2006, 134 (06) :1158-1166
[9]  
*CDC ADV COMM IMM, 2009, NOV H1N1 VACC REC
[10]  
*CDCP, 2009, FLU VIEW 2009 2010 I