Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis

被引:283
作者
Ramaswamy, SV
Reich, R
Dou, SJ
Jasperse, L
Pan, X
Wanger, A
Quitugua, T
Graviss, EA
机构
[1] Baylor Coll Med, Dept Pathol 209E, Houston TB Initiat, Houston, TX 77030 USA
[2] Univ Texas, Sch Med, Dept Pathol, Houston, TX 77030 USA
[3] Univ Texas, Hlth Sci Ctr, Dept Microbiol, San Antonio, TX 78245 USA
关键词
D O I
10.1128/AAC.47.4.1241-1250.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide polymorphisms in multiple genes are found exclusively in INH-resistant clinical isolates. These genes either are involved in mycolic acid biosynthesis or are overexpressed as a response to the buildup or cellular toxicity of INH.
引用
收藏
页码:1241 / 1250
页数:10
相关论文
共 47 条
[1]   Characterization of isoniazid-resistant strains of Mycobacterium tuberculosis on the basis of phenotypic properties and mutations in katG [J].
Abate G. ;
Hoffner S.E. ;
Miörner H. .
European Journal of Clinical Microbiology and Infectious Diseases, 2001, 20 (5) :329-333
[2]   Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL):: The effect of isoniazid on gene expression in Mycobacterium tuberculosis [J].
Alland, D ;
Kramnik, I ;
Weisbrod, TR ;
Otsubo, L ;
Cerny, R ;
Miller, LP ;
Jacobs, WR ;
Bloom, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13227-13232
[3]   Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition [J].
Alland, D ;
Steyn, AJ ;
Weisbrod, T ;
Aldrich, K ;
Jacobs, WR .
JOURNAL OF BACTERIOLOGY, 2000, 182 (07) :1802-1811
[4]  
[Anonymous], 1997, WHOTB97229
[5]   The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance [J].
Banerjee, A ;
Sugantino, M ;
Sacchettini, JC ;
Jacobs, WR .
MICROBIOLOGY-SGM, 1998, 144 :2697-2704
[6]   INHA, A GENE ENCODING A TARGET FOR ISONIAZID AND ETHIONAMIDE IN MYCOBACTERIUM-TUBERCULOSIS [J].
BANERJEE, A ;
DUBNAU, E ;
QUEMARD, A ;
BALASUBRAMANIAN, V ;
UM, KS ;
WILSON, T ;
COLLINS, D ;
DELISLE, G ;
JACOBS, WR .
SCIENCE, 1994, 263 (5144) :227-230
[7]   Mechanism of isoniazid uptake in Mycobacterium tuberculosis [J].
Bardou, F ;
Raynaud, C ;
Ramos, C ;
Lanéelle, MA ;
Lanéelle, G .
MICROBIOLOGY-UK, 1998, 144 :2539-2544
[8]   Mechanisms of isoniazid resistance in Mycobacterium tuberculosis:: Enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates [J].
Basso, LA ;
Zheng, RJ ;
Musser, JM ;
Jacobs, WR ;
Blanchard, JS .
JOURNAL OF INFECTIOUS DISEASES, 1998, 178 (03) :769-775
[9]  
BERNSTEIN J, 1952, AM REV TUBERC, V76, P568
[10]   Drug-resistant tuberculosis: Review of the worldwide situation and the WHO/IUATLD global surveillance project [J].
Cohn, DL ;
Bustreo, F ;
Raviglione, MC .
CLINICAL INFECTIOUS DISEASES, 1997, 24 :S121-S130