Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana

被引:132
作者
Ludidi, N [1 ]
Gehring, C [1 ]
机构
[1] Univ Western Cape, Dept Biotechnol, ZA-7535 Bellville, South Africa
关键词
D O I
10.1074/jbc.M210983200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3',5'-cyclic monophosphate (cGMP) from guanosine 5'-triphosphate (GTP). While many cGMP-mediated processes in plants have been reported, no plant molecule with GC activity has been identified. When the Arabidopsis thaliana genome is queried with GC sequences from cyanobacteria, lower and higher eukaryotes no unassigned proteins with significant similarity are found. However, a motif search of the A. thaliana genome based on conserved and functionally assigned amino acids in the catalytic center of annotated GCs returns one candidate that also contains the adjacent glycine-rich domain typical for GCs. In this molecule, termed AtGC1, the catalytic domain is in the N-terminal part. AtGC1 contains the arginine or lysine that participates in hydrogen bonding with guanine and the cysteine that confers substrate specificity for GTP. When AtGC1 is expressed in Escherichia coli, cell extracts yield >2.5 times more cGMP than control extracts and this increase is not nitric oxide dependent. Furthermore, purified recombinant AtGC1 has Mg2+-dependent GC activity in vitro and >3 times less adenylyl cyclase activity when assayed with ATP as substrate in the absence of GTP. Catalytic activity in vitro proves that AtGC1 can function either as a monomer or homo-oligomer. AtGC1 is thus not only the first functional plant GC but also, due to its unusual domain organization, a member of a new class of GCs.
引用
收藏
页码:6490 / 6494
页数:5
相关论文
共 41 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   PHYTOCHROME SIGNAL-TRANSDUCTION PATHWAYS ARE REGULATED BY RECIPROCAL CONTROL MECHANISMS [J].
BOWLER, C ;
YAMAGATA, H ;
NEUHAUS, G ;
CHUA, NH .
GENES & DEVELOPMENT, 1994, 8 (18) :2188-2202
[3]   Phytochrome and UV signal transduction pathways [J].
Bowler, C ;
Frohnmeyer, H ;
Schafer, E ;
Neuhaus, G ;
Chua, NH .
ACTA PHYSIOLOGIAE PLANTARUM, 1997, 19 (04) :475-483
[4]  
Chamovitz DA, 1996, CRIT REV PLANT SCI, V15, P455, DOI 10.1080/07352689609382367
[5]   Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose [J].
Durner, J ;
Wendehenne, D ;
Klessig, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10328-10333
[6]  
GARBERS DL, 1994, J BIOL CHEM, V269, P30741
[7]   REGULATION OF VOLTAGE-DEPENDENCE OF THE KAT1 CHANNEL BY INTRACELLULAR FACTORS [J].
HOSHI, T .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (03) :309-328
[8]   The adenylyl and guanylyl cyclase superfamily [J].
Hurley, JH .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (06) :770-777
[9]   Protein secondary structure prediction based on position-specific scoring matrices [J].
Jones, DT .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (02) :195-202
[10]   Enhanced genome annotation using structural profiles in the program 3D-PSSM [J].
Kelley, LA ;
MacCallum, RM ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (02) :499-520