Evolutionary rough feature selection in gene expression data

被引:91
作者
Banerjee, Mohua [1 ]
Mitra, Sushmita
Banka, Haider
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Indian Stat Inst, Machine Intelligent Unit, Kolkata 700108, W Bengal, India
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS | 2007年 / 37卷 / 04期
关键词
bioinformatics; feature selection; genetic algorithms (GAs); microarray data; rough sets; reduct generation; soft computing;
D O I
10.1109/TSMCC.2007.897498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An evolutionary rough feature selection algorithm used for classifying microarray gene expression patterns. Since data typically consist of a large number of redundant an initial redundancy reduction of the attributes is done to able faster convergence. Rough set theory is employed to reducts, which represent the minimal sets of nonredundant features capable of discerning between all objects, in a framework. The effectiveness of the algorithm is demonstrated three cancer datasets.
引用
收藏
页码:622 / 632
页数:11
相关论文
共 28 条
[1]  
ANAND A, 2002, THESIS INDIAN I TECH
[2]  
Ando S, 2003, LECT NOTES COMPUT SC, V2611, P1
[3]  
[Anonymous], 2002, IEEE COMPUT, V35
[4]  
[Anonymous], 1992, INTELLIGENT DECISION
[5]  
Bjorvand AT, 1997, FR ART INT, V40, P290
[6]   Saliency analysis of support vector machines for gene selection in tissue classification [J].
Cao, L ;
Seng, CK ;
Gu, Q ;
Lee, HP .
NEURAL COMPUTING & APPLICATIONS, 2003, 11 (3-4) :244-249
[7]   Data mining for gene expression profiles from DNA, microarray [J].
Cho, SB ;
Won, HH .
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) :593-608
[8]  
CHU F, P 2004 ANN M N AM FU, V2, P555
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
Deb K., 2001, WIL INT S SYS OPT