Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory

被引:90
作者
Du, Huaqiang [1 ]
Zhou, Guomo [1 ]
Fan, Wenyi [2 ]
Ge, Hongli [1 ]
Xu, Xiaojun [1 ]
Shi, Yongjun [1 ]
Fan, Weiliang [1 ]
机构
[1] Zhejiang Forestry Univ, Sch Environm Sci & Technol, Hangzhou 311300, Zhejiang, Peoples R China
[2] NE Forestry Univ, Forest Coll, Harbin 150040, Heilongjiang Pr, Peoples R China
关键词
Geostatistics; Moso bamboo; Aboveground biomass; Spatial heterogeneity; Spatial distribution; Carbon contribution; MAPPING FOREST BIOMASS;
D O I
10.1007/s11258-009-9659-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Moso bamboo extensively distributes in southeast and south Asia, and plays an important role in global carbon budget. However, its spatial distribution and heterogeneity are poorly understood. This research uses geostatistics theory to examine the spatial heterogeneity of aboveground biomass (AGB) of moso bamboo, and uses a point kriging interpolation method to estimate and map its spatial distribution. Results showed that (1) spatial heterogeneity and spatial pattern of moso bamboo's AGB can be revealed by an exponential semivariance model. The analysis of the model structure indicating that the AGB spatial heterogeneity is mainly composed of spatial autocorrelation components, and spatial autocorrelation range is from 360 to 41,220 m; (2) kriging standard deviation map showing the level of the model errors indicates that the AGB spatial distribution by point kriging interpolation method is reliable; (3) the average AGB of moso bamboo in Anji County is 44.228 Mg hm(-2), and carbon density is 20.297 Mg C hm(-2). The total AGB of moso bamboo accounts for 16.97% of the total forest-stand biomass in Zhejiang province. The total carbon storage of moso bamboo in China is 68.3993 Tg C, accounting for 1.6286% of the total forest carbon storage. This implies the important contribution of moso bamboo in regional or national carbon budget.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 1999, Geostatistics applied in ecology
[2]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677
[3]  
Chen H., 1998, PUBESCENS FOREST N F, V34, P60
[4]  
[陈先刚 CHEN XianGang], 2008, [生态学报, Acta Ecologica Sinica], V28, P5218
[5]  
Chen XiongWen Chen XiongWen, 2000, Scientia Silvae Sinicae, V36, P35
[6]   Scale-dependent spatial heterogeneity of vegetation in Mu Us sandy land, a semi-arid area of China [J].
Chen, YF ;
Yu, FH ;
Dong, M .
PLANT ECOLOGY, 2002, 162 (01) :135-142
[7]   Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment [J].
De Jong, SM ;
Pebesma, EJ ;
Lacaze, B .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (07) :1505-1520
[8]  
Fang JY, 2001, ACTA BOT SIN, V43, P967
[9]  
Ge JP, 1995, J NE FOR U, V23, P88
[10]  
HAN YZ, 2002, CHIN J APPL ECOL, V15, P615