Generating partitions for two-dimensional hyperbolic maps

被引:7
作者
Backer, A
Chernov, N
机构
[1] Univ Ulm, Theoret Phys Abt, D-89069 Ulm, Germany
[2] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
关键词
D O I
10.1088/0951-7715/11/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of two-dimensional hyperbolic maps (which includes certain billiard systems) we construct finite generating partitions. Thus, trajectories of the map can be labelled uniquely by doubly infinite symbol sequences, where the symbols correspond to the atoms of the partition. It is shown that the corresponding conditions are fulfilled in the case of the cardioid billiard, the stadium billiard (and other Bunimovich billiards), planar dispersing and semidispersing billiards.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 34 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]  
[Anonymous], DYN REPORT
[3]   Mode fluctuations as fingerprints of chaotic and non-chaotic systems [J].
Aurich, R ;
Backer, A ;
Steiner, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (07) :805-849
[4]   Symbolic dynamics and periodic orbits for the cardioid billiard [J].
Backer, A ;
Dullin, HR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06) :1991-2020
[5]   SPECTRAL STATISTICS IN THE QUANTIZED CARDIOID BILLIARD [J].
BACKER, A ;
STEINER, F .
PHYSICAL REVIEW E, 1995, 52 (03) :2463-2472
[6]  
BACKER A, 1997, ULMTP978
[7]   UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD [J].
BIHAM, O ;
KVALE, M .
PHYSICAL REVIEW A, 1992, 46 (10) :6334-6339
[8]   Edge diffraction, trace formulae and the cardioid billiard [J].
Bruus, H ;
Whelan, ND .
NONLINEARITY, 1996, 9 (04) :1023-1047
[9]  
Bunimovich L.A., 1974, FUNCT ANAL APPL+, V8, P254, DOI [10.1007/BF01075700, DOI 10.1007/BF010757000303.28018]
[10]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312