Inviscid axisymmetrization of an elliptical vortex

被引:105
作者
Koumoutsakos, P
机构
[1] NASA, Ames Res Ctr, Ctr Turbulence Res, Moffett Field, CA 94035 USA
[2] ETH Zurich, Inst Fluid Dynam, CH-8092 Zurich, Switzerland
关键词
vortex methods; inviscid vortical flows; vorticity axisymmetrization;
D O I
10.1006/jcph.1997.5749
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The inviscid evolution of elliptical, nonuniform vorticity distributions is studied computationally using a high resolution Lagrangian (vortex) method with minimal numerical dissipation. The simulations reveal that the vortices evolve, through a process of filamentation, to a configuration consisting of a vortex surrounded by weak filamentary structures. The shape of the final configuration depends on the profile of the initial vorticity distribution. For the same ellipticity, relatively smooth profiles evolve to axisymmetric vortical structures, whereas sharper initial vorticity distributions result in robust nonaxisymmetric configurations. A systematic convergence study is conducted to establish the accuracy of the method for long time inviscid simulations. To further assess the issue of axisymmetrization we compare our results with related numerical and experimental studies. (C) 1997 Academic Press.
引用
收藏
页码:821 / 857
页数:37
相关论文
共 30 条
[1]  
[Anonymous], 1880, P MATH SOC
[2]  
Batchelor G. K., 1969, Phys. Fluids, V12, pII, DOI DOI 10.1063/1.1692443
[3]  
BEALE JT, 1986, P WORKSH COMP FLUID
[4]   ROLE OF LANDAU DAMPING IN CROSSED-FIELD ELECTRON BEAMS AND INVISCID SHEAR FLOW [J].
BRIGGS, RJ ;
DAUGHERTY, JD ;
LEVY, RH .
PHYSICS OF FLUIDS, 1970, 13 (02) :421-+
[5]  
CHORIN AJ, 1973, J FLUID MECH, V57, P380
[6]  
CHRISTIANSEN JP, 1973, J COMPUT PHYS, V13, P363, DOI 10.1016/0021-9991(73)90042-9
[7]   EXPERIMENTS ON VORTEX DYNAMICS IN PURE ELECTRON PLASMAS [J].
DRISCOLL, CF ;
FINE, KS .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (06) :1359-1366
[8]   CONTOUR DYNAMICS AND CONTOUR SURGERY - NUMERICAL ALGORITHMS FOR EXTENDED, HIGH-RESOLUTION MODELING OF VORTEX DYNAMICS IN TWO-DIMENSIONAL, INVISCID, INCOMPRESSIBLE FLOWS [J].
DRITSCHEL, DG .
COMPUTER PHYSICS REPORTS, 1989, 10 (03) :77-146
[9]  
FINE KS, RELAXATION 2D TURBUL
[10]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT