Bayesian spatial risk prediction of Schistosoma mansoni infection in western Cote d'Ivoire using a remotely-sensed digital elevation model

被引:46
作者
Beck-Woerner, Christian
Raso, Giovanna
Vounatsou, Penelope
N'Goran, Eliezer K.
Rigo, Gergely
Parlow, Eberhard
Utzinger, Juerg [1 ]
机构
[1] Swiss Trop Inst, Dept Publ Hlth & Epidemiol, CH-4002 Basel, Switzerland
[2] Queensland Inst Med Res, Mol Parasitol Lab, Brisbane, Qld 4006, Australia
[3] Univ Abidjan Cocody, UFR Biosci, Abidjan, Cote Ivoire
[4] Ctr Suisse Rech Sci, Abidjan, Cote Ivoire
[5] Univ Basel, Dept Environm Sci, Inst Meteorol Climatol & Remote Sensing, CH-4003 Basel, Switzerland
关键词
D O I
10.4269/ajtmh.2007.76.956
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Cote d'Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.
引用
收藏
页码:956 / 963
页数:8
相关论文
共 38 条
[1]  
APPLETON C C, 1978, Malacological Review, V11, P1
[2]   Spatial modeling of house prices using normalized distance-weighted sums of stationary processes [J].
Banerjee, S ;
Gelfand, AE ;
Knight, JR ;
Sirmans, CF .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2004, 22 (02) :206-213
[3]   Use of thermal and vegetation index data from earth observing satellites to evaluate the risk of schistosomiasis in Bahia, Brazil [J].
Bavia, ME ;
Malone, JB ;
Hale, L ;
Dantas, A ;
Marroni, L ;
Reis, R .
ACTA TROPICA, 2001, 79 (01) :79-85
[4]  
Beven K.J., 1979, HYDROL SCI B, V24, P43, DOI [DOI 10.1080/02626667909491834, 10.1080/02626667909491834]
[5]  
Brooker S, 2000, ADV PARASIT, V47, P245, DOI 10.1016/S0065-308X(00)47011-9
[6]  
Brown D., 1994, FRESHWATER SNAILS AF
[7]   A recent history of forest fragmentation in southwestern Ivory Coast [J].
Chatelain, C ;
Gautier, L ;
Spichiger, R .
BIODIVERSITY AND CONSERVATION, 1996, 5 (01) :37-53
[8]   Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania [J].
Clements, ACA ;
Lwambo, NJS ;
Blair, L ;
Nyandindi, U ;
Kaatano, G ;
Kinung'hi, S ;
Webster, JP ;
Fenwick, A ;
Brooker, S .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2006, 11 (04) :490-503
[9]   Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya [J].
Clennon, JA ;
King, CH ;
Muchiri, EM ;
Kariuki, HC ;
Ouma, JH ;
Mungai, P ;
Kitron, U .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2004, 70 (04) :443-448
[10]   Model-based geostatistics [J].
Diggle, PJ ;
Tawn, JA ;
Moyeed, RA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 :299-326