Coordination of voluntary and stimulus-driven attentional control in human cortex

被引:384
作者
Serences, JT
Shomstein, S
Leber, AB
Golay, X
Egeth, HE
Yantis, S
机构
[1] Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
[3] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
关键词
D O I
10.1111/j.0956-7976.2005.00791.x
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Visual attention may be voluntarily directed to particular locations or features (voluntary control), or it may be captured by salient stimuli, such as the abrupt appearance of a new perceptual object (stimulus-driven control). Most often, however, the deployment of attention is the result of a dynamic interplay between voluntary attentional control settings (e.g., based on prior knowledge about a target's location or color) and the degree to which stimuli in the visual scene match these voluntary control settings. Consequently, nontarget items in the scene that share a defining feature with the target of visual search can capture attention, a phenomenon termed contingent attentional capture. We used functional magnetic resonance imaging to show that attentional capture by target-colored distractors is accompanied by increased cortical activity in corresponding regions of retinotopically organized visual cortex. Concurrent activation in the temporoparietal junction and ventral frontal cortex suggests that these regions coordinate voluntary and stimulus-driven attentional control settings to determine which stimuli effectively compete for attention.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 43 条
[1]   Neural mechanisms of visual attention: Object-based selection of a region in space [J].
Arrington, CM ;
Carr, TH ;
Mayer, AR ;
Rao, SM .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2000, 12 :106-117
[2]   OVERRIDING STIMULUS-DRIVEN ATTENTIONAL CAPTURE [J].
BACON, WF ;
EGETH, HE .
PERCEPTION & PSYCHOPHYSICS, 1994, 55 (05) :485-496
[3]   Effects of similarity and history on neural mechanisms of visual selection [J].
Bichot, NP ;
Schall, JD .
NATURE NEUROSCIENCE, 1999, 2 (06) :549-554
[4]   Neuronal activity in the lateral intraparietal area and spatial attention [J].
Bisley, JW ;
Goldberg, ME .
SCIENCE, 2003, 299 (5603) :81-86
[5]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[6]   Human fMRI evidence for the neural correlates of preparatory set [J].
Connolly, JD ;
Goodale, MA ;
Menon, RS ;
Munoz, DP .
NATURE NEUROSCIENCE, 2002, 5 (12) :1345-1352
[7]   A common network of functional areas for attention and eye movements [J].
Corbetta, M ;
Akbudak, E ;
Conturo, TE ;
Snyder, AZ ;
Ollinger, JM ;
Drury, HA ;
Linenweber, MR ;
Petersen, SE ;
Raichle, ME ;
Van Essen, DC ;
Shulman, GL .
NEURON, 1998, 21 (04) :761-773
[8]   Voluntary orienting is dissociated from target detection in human posterior parietal cortex [J].
Corbetta, M ;
Kincade, JM ;
Ollinger, JM ;
McAvoy, MP ;
Shulman, GL .
NATURE NEUROSCIENCE, 2000, 3 (03) :292-297
[9]   Control of goal-directed and stimulus-driven attention in the brain [J].
Corbetta, M ;
Shulman, GL .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (03) :201-215
[10]  
Corbetta M., 2002, COGNITIVE NEURAL BAS, P259