Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain

被引:69
作者
Galter, D
Carmine, A
Buervenich, S
Duester, G
Olson, L [1 ]
机构
[1] Karolinska Inst, Dept Neurosci, S-17177 Stockholm, Sweden
[2] Karolinska Inst, Dept Mol Med, Clin Neurogenet Unit, S-17177 Stockholm, Sweden
[3] Burnham Inst, OncoDev Biol Program, La Jolla, CA 92037 USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 06期
关键词
alcohol dehydrogenase; in situ hybridization; post mortem tissue;
D O I
10.1046/j.1432-1033.2003.03502.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate class I as well as class IV ADH expression in different regions of the rat brain. Here we have studied the expression patterns of three ADH classes in adult rat, mouse and human tissues using radioactive oligonucleotide in situ hybridization. Specificity of probes was tested on liver and stomach control tissue, as well as tissue from class IV ADH knock-out mice. Only class III ADH mRNA was found to be expressed in brain tissue of all three investigated species. Particularly high expression levels were found in neurons of the red nucleus in human tissue, while cortical neurons, pyramidal and granule cells of the hippocampus and dopamine neurons of substantia nigra showed moderate expression levels. Purkinje cells of cerebellum were positive for class III ADH mRNA in all species investigated, whereas granular layer neurons were positive only in rodents. The choroid plexus was highly positive for class III ADH, while no specific signal for class I or class IV ADH was detected. Our results thus support the notion that the only ADH expressed in adult mouse, rat and human brain is class III ADH.
引用
收藏
页码:1316 / 1326
页数:11
相关论文
共 44 条
[1]   Expression patterns of class I and class IV alcohol dehydrogenase genes in developing epithelia suggest a role for alcohol dehydrogenase in local retinoic acid synthesis [J].
Ang, HL ;
Deltour, L ;
ZgombicKnight, M ;
Wagner, MA ;
Duester, G .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 1996, 20 (06) :1050-1064
[2]   Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression [J].
Ang, HL ;
Deltour, L ;
Hayamizu, TF ;
ZgombicKnight, M ;
Duester, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (16) :9526-9534
[3]   CHI-ADH IS THE SOLE ALCOHOL-DEHYDROGENASE ISOZYME OF MAMMALIAN BRAINS - IMPLICATIONS AND INFERENCES [J].
BEISSWENGER, TB ;
HOLMQUIST, B ;
VALLEE, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (24) :8369-8373
[4]   PHYSIOLOGICAL SUBSTRATES FOR RAT ALCOHOL-DEHYDROGENASE CLASSES - ALDEHYDES OF LIPID-PEROXIDATION, OMEGA-HYDROXYFATTY ACIDS, AND RETINOIDS [J].
BOLEDA, MD ;
SAUBI, N ;
FARRES, J ;
PARES, X .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 307 (01) :85-90
[5]   OXIDATION OF FORMALDEHYDE AND ACETALDEHYDE BY NAD+-DEPENDENT DEHYDROGENASES IN RAT NASAL MUCOSAL HOMOGENATES [J].
CASANOVASCHMITZ, M ;
DAVID, RM ;
HECK, HD .
BIOCHEMICAL PHARMACOLOGY, 1984, 33 (07) :1137-1142
[6]   SENSITIVE MESSENGER-RNA DETECTION USING UNFIXED TISSUE - COMBINED RADIOACTIVE AND NONRADIOACTIVE INSITU HYBRIDIZATION HISTOCHEMISTRY [J].
DAGERLIND, A ;
FRIBERG, K ;
BEAN, AJ ;
HOKFELT, T .
HISTOCHEMISTRY, 1992, 98 (01) :39-49
[7]   ENZYMOGENESIS - CLASSICAL LIVER ALCOHOL-DEHYDROGENASE ORIGIN FROM THE GLUTATHIONE-DEPENDENT FORMALDEHYDE DEHYDROGENASE LINE [J].
DANIELSSON, O ;
JORNVALL, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9247-9251
[8]  
Deltour L, 1999, DEV GENET, V25, P1, DOI 10.1002/(SICI)1520-6408(1999)25:1<1::AID-DVG1>3.0.CO
[9]  
2-W
[10]   Families of retinoid dehydrogenases regulating vitamin A function - Production of visual pigment and retinoic acid [J].
Duester, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (14) :4315-4324