Feldkamp and circle-and-line cone-beam reconstruction for 3D micro-CT of vascular networks

被引:55
作者
Johnson, RH
Hu, H
Haworth, ST
Cho, PS
Dawson, CA
Linehan, JH
机构
[1] Marquette Univ, Dept Biomed Engn, Milwaukee, WI 53201 USA
[2] Zablocki Vet Adm Med Ctr, Res Serv, Milwaukee, WI 53295 USA
[3] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Dept Biophys, Milwaukee, WI 53226 USA
[5] GE Co, Med Syst, Appl Sci Lab, Milwaukee, WI 53201 USA
[6] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA
[7] Univ Washington, Sch Med, Dept Radiat Oncol, Seattle, WA 98195 USA
关键词
D O I
10.1088/0031-9155/43/4/020
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Detailed morphometric knowledge of the microvascular network is needed for studies relating structure to haemodynamic function in organs like the lung. Clinical volumetric CT is limited to millimetre-order spatial resolution. Since evidence suggests that small arterioles (50 to 300 micrometres) dominate pulmonary haemodynamics, we built a micro-CT scanner, capable of imaging excised lungs in 3D with 100 mu m resolution, for basic physiology research. The scanner incorporates a micro-focal (3 mu m) x-ray source, an xyz theta stage and a CCD-coupled image intensifier detector. We imaged phantoms and contrast-enhanced rat lungs, reconstructing the data with either the Feldkamp or the circle-and-line cone-beam reconstruction algorithm. We present reconstructions using 180 views over 360 degrees for the circular trajectory, augmented with views from a linear scan for the circle-and-line algorithm. Especially for platelike features perpendicular to the rotation axis and remote from the midplane, the circle-and-line algorithm produces superior reconstructions compared with Feldkamp's algorithm. We conclude that the use of nonplanar source trajectories to perform micro-CT on contrast-enhanced, excised lungs can provide data useful for morphometric analysis of vascular trees, currently down to the 130 mu m level.
引用
收藏
页码:929 / 940
页数:12
相关论文
共 23 条
  • [1] CONE-BEAM CT FOR RADIOTHERAPY APPLICATIONS
    CHO, PS
    JOHNSON, RH
    GRIFFIN, TW
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1995, 40 (11) : 1863 - 1883
  • [2] CONE-BEAM RECONSTRUCTION BY THE USE OF RADON-TRANSFORM INTERMEDIATE FUNCTIONS
    CLACK, R
    DEFRISE, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (02) : 580 - 585
  • [3] Regional perfusion parameters from pulmonary microfocal angiograms
    Clough, AV
    Linehan, JH
    Dawson, CA
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1997, 272 (03): : H1537 - H1548
  • [4] Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Correction of image intensifier distortion
    Fahrig, R
    Moreau, M
    Holdsworth, DW
    [J]. MEDICAL PHYSICS, 1997, 24 (07) : 1097 - 1106
  • [5] PRACTICAL CONE-BEAM ALGORITHM
    FELDKAMP, LA
    DAVIS, LC
    KRESS, JW
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06): : 612 - 619
  • [6] FINLAY M, 1986, Q J EXP PHYSIOL CMS, V71, P151, DOI 10.1113/expphysiol.1986.sp002975
  • [7] GRANGEAT P, 1991, LECT NOTES MATH, V1497, P66
  • [8] GUBURICK P, 1993, FEINFOCUS ROENTGEN S
  • [9] IMAGE-ANALYSIS USING MATHEMATICAL MORPHOLOGY
    HARALICK, RM
    STERNBERG, SR
    ZHUANG, XH
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (04) : 532 - 550
  • [10] HARRIS P, 1977, PULMONARY CIRCULATIO