Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries

被引:107
作者
Tamura, N [1 ]
Ohshita, R [1 ]
Fujimoto, M [1 ]
Kamino, M [1 ]
Fujitani, S [1 ]
机构
[1] Sanyo Elect Co Ltd, Energy Res & Dev Ctr, Soft Energy Co, Nishi Ku, Kobe, Hyogo 6512242, Japan
关键词
D O I
10.1149/1.1568108
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Tin anodes deposited electrochemically on a copper foil current collector are studied to develop a next-generation lithium-ion battery with higher energy density. Better cycle performance through ten initial cycles under full charge and discharge conditions was attained by annealing tin electrodeposited on a rough surface copper foil. The annealing process was found to change the main active material from Sn to Cu6Sn5 with some minor compounds. Furthermore, a microcolumnar structure of the active material portion was found to be self-organized in accordance with the surface profile of the foil during the first charge-discharge cycle. Advantages of these structural features are discussed in terms of the initial charge and discharge performance, including specific capacity and coulombic efficiency measured by using a three-electrode cell. (C) 2003 The Electrochemical Society.
引用
收藏
页码:A679 / A683
页数:5
相关论文
共 27 条
[1]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[2]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[5]   Metallic negative electrode materials for rechargeable nonaqueous batteries [J].
Ehrlich, GM ;
Durand, C ;
Chen, X ;
Hugener, TA ;
Spiess, F ;
Suib, SL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (03) :886-891
[6]   Lithium alloy negative electrodes [J].
Huggins, RA .
JOURNAL OF POWER SOURCES, 1999, 81 :13-19
[7]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[8]   LixCu6Sn5 (0<x<13):: An intermetallic insertion electrode for rechargeable lithium batteries [J].
Kepler, KD ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (07) :307-309
[9]   In situ X-ray study of the electrochemical reaction of Li with η′-Cu6Sn5 [J].
Larcher, D ;
Beaulieu, LY ;
MacNeil, DD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1658-1662
[10]   Study of the reaction of lithium with isostructural A2B and various AlxB alloys [J].
Larcher, D ;
Beaulieu, LY ;
Mao, O ;
George, AE ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1703-1708