Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation

被引:109
作者
Fakitsas, Panagiotis
Adam, Gabriele
Daidie, Dorothee
van Bemmelen, Miguel X.
Fouladkou, Fatemeh
Patrignani, Andrea
Wagner, Ulrich
Warth, Richard
Camargo, Simone M. R.
Staub, Olivier
Verrey, Francois
机构
[1] Univ Zurich, Inst Physiol, CH-8057 Zurich, Switzerland
[2] Univ Zurich, Ctr Integrat Human Physiol, CH-8057 Zurich, Switzerland
[3] ETH, Funct Genom Ctr, Zurich, Switzerland
[4] Univ Lausanne, Inst Pharmacol & Toxicol, CH-1015 Lausanne, Switzerland
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2007年 / 18卷 / 04期
关键词
D O I
10.1681/ASN.2006080902
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The mineralocorticoid hormone aldosterone controls sodium reabsorption and BP largely by regulating the cell-surface expression and function of the epithelial sodium channel (ENaC) in target kidney tubules. Part of the stimulatory effect of aldosterone on ENaC is mediated by the induction of serum- and glucocorticoid-regulated kinase 1 (Sgk1), a kinase that interferes with the ubiquitylation of ENaC by ubiquitin-protein ligase Nedd4-2. In vivo early aldosterone-regulated mRNA now has been identified in microselected mouse distal nephron by microarray. From 22 mRNA that displayed a two-fold or more change, 13 were downregulated and nine were upregulated. Besides Sgk1, the induced mRNA include Grem2 (protein related to DAN and cerebrus [PRDC]), activating transcription factor 3, cAMP responsive element modulator, and the ubiquitin-specific protease Usp2-45. The induction of this last enzyme isoform was verified in mouse distal nephron tubule at the protein level. With the use of Hek293 cells, Xenopus oocytes, and mpkCCD(c14) cells as expression systems, it was shown that Usp2-45 deubiquitylates ENaC and stimulates ENaC-mediated sodium transport, an effect that is not additive to that of Sgk1. A deubiquitylating enzyme that targets ENaC in vitro and thus may play a role in sodium transport regulation was identified within a series of new in vivo early aldosterone-regulated gene products.
引用
收藏
页码:1084 / 1092
页数:9
相关论文
共 41 条
[1]   Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome [J].
Abriel, H ;
Loffing, J ;
Rebhun, JF ;
Pratt, JH ;
Schild, L ;
Horisberger, JD ;
Rotin, D ;
Staub, O .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (05) :667-673
[2]   Mechanism and function of deubiquitinating enzymes [J].
Amerik, AY ;
Hochstrasser, M .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1695 (1-3) :189-207
[3]   Epithelial Na+ channel mutants causing Liddle's syndrome retain ability to respond to aldosterone and vasopressin [J].
Auberson, M ;
Hoffman-Pochon, N ;
Vandewalle, A ;
Kellenberger, S ;
Schild, L .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 285 (03) :F459-F471
[4]  
Bens M, 1999, J AM SOC NEPHROL, V10, P923
[5]   Dysfunction of epithelial sodium transport: From human to mouse [J].
Bonny, O ;
Hummler, E .
KIDNEY INTERNATIONAL, 2000, 57 (04) :1313-1318
[6]   Epithelial sodium channel regulated by aldosterone-induced protein sgk [J].
Chen, SY ;
Bhargava, A ;
Mastroberardino, L ;
Meijer, OC ;
Wang, J ;
Buse, P ;
Firestone, GL ;
Verrey, F ;
Pearce, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :2514-2519
[7]   Mineralocorticoid regulation of epithelial Na+ channels is maintained in a mouse model of Liddle's syndrome [J].
Dahlmann, A ;
Pradervand, S ;
Hummler, E ;
Rossier, BC ;
Frindt, G ;
Palmer, LG .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 285 (02) :F310-F318
[8]   The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes [J].
de la Rosa, DA ;
Zhang, P ;
Náray-Fejes-Tóth, A ;
Fejes-Tóth, G ;
Canessa, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :37834-37839
[9]   Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression [J].
Debonneville, C ;
Flores, SY ;
Kamynina, E ;
Plant, PJ ;
Tauxe, C ;
Thomas, MA ;
Münster, C ;
Chraïbi, A ;
Pratt, JH ;
Horisberger, JD ;
Pearce, D ;
Loffing, J ;
Staub, O .
EMBO JOURNAL, 2001, 20 (24) :7052-7059
[10]   A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel's α-subunit [J].
Diakov, A ;
Korbmacher, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38134-38142