Invasion percolation and global optimization

被引:46
作者
Barabasi, AL [1 ]
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
关键词
D O I
10.1103/PhysRevLett.76.3750
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invasion bond percolation (IBP) is mapped exactly into Prim's algorithm for finding the shortest spanning tree of a weighted random graph. Exploring this mapping, which is valid for arbitrary dimensions and lattices, we introduce a new IBP model that belongs to the same universality class as IBP and generates the minimal energy tree spanning the IBP cluster.
引用
收藏
页码:3750 / 3753
页数:4
相关论文
共 20 条
[1]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[2]   SIMULATION AND THEORY OF 2-PHASE FLOW IN POROUS-MEDIA [J].
BLUNT, M ;
KING, MJ ;
SCHER, H .
PHYSICAL REVIEW A, 1992, 46 (12) :7680-7699
[3]  
Bunde A., 1991, FRACTALS DISORDERED
[4]  
CAYYLEY A, 1874, PHILOS MAG, V67, P444
[5]   CAPILLARY DISPLACEMENT AND PERCOLATION IN POROUS-MEDIA [J].
CHANDLER, R ;
KOPLIK, J ;
LERMAN, K ;
WILLEMSEN, JF .
JOURNAL OF FLUID MECHANICS, 1982, 119 (JUN) :249-267
[6]  
Christofides N, 1975, GRAPH THEORY ALGORIT
[7]   OPTIMAL PATHS AND DOMAIN-WALLS IN THE STRONG DISORDER LIMIT [J].
CIEPLAK, M ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2320-2324
[8]  
CIEPLAK M, IN PRESS
[9]  
Feder J., 1988, FRACTALS PLENUM
[10]   DYNAMICS OF INVASION PERCOLATION [J].
FURUBERG, L ;
FEDER, J ;
AHARONY, A ;
JOSSANG, T .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2117-2120