Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst

被引:148
作者
Chong, ASM [1 ]
Zhao, XS [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
functionalization of mesoporous silicas; penicillin G acylase; immobilization; enzymatic activity;
D O I
10.1016/j.cattod.2004.06.064
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, functionalization of large-pore nanoporous silica materials was carried out by condensation of tetraethylorthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltriethoxysilane (VTES), and 4-(triethoxysilyl)butyronitrile (TSBN), respectively, in the presence of non-ionic surfactant under acidic conditions. The TSBN functionality was subsequently converted to carboxyl group while APTES was further functionalized with glutardialdehyde, a cross linker. The various functionalized materials were used as supports for immobilization of enzyme penicillin G acylase (PGA). Experimental data showed that the functionalized materials except for the material functionalized with MPTMS possess a faster loading kinetics and a higher loading amount of enzyme PGA than the pure-silica counterpart. The enzymatic catalytic activities of the immobilized biocatalysts varied from 52.2 to 167.5 U/g of solid. The glutardialdehyde-activated material displayed the highest initial immobilized enzyme activity and the most stable activity among all the support materials. PGA immobilized on VTES-functionalized nanoporous silica showed the highest initial enzymatic activity (67.7 U/mg of PGA, much higher than that of free PGA (300 U/mg of PGA). Experimental data along with theoretical analysis results indicate that glutardialdehyde is a good cross linker, offering covalent binding of PGA with the support materials while VTES-functionalized nanoporous silica is a very good potential support for physical entrapment of PGA enzyme. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 32 条
[1]   The role of hydrophobic active-site residues in substrate specificity and acyl transfer activity of penicillin acylase [J].
Alkema, WBL ;
Dijkhuis, AJ ;
de Vries, E ;
Janssen, DB .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (08) :2093-2100
[2]   IMMOBILIZATION-STABILIZATION OF PENICILLIN-G ACYLASE FROM ESCHERICHIA-COLI [J].
ALVARO, G ;
FERNANDEZLAFUENTE, R ;
BLANCO, RM ;
GUISAN, JM .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1990, 26 (02) :181-195
[3]   EUPERGIT oxirane acrylic beads: How to make enzymes fit for biocatalysis [J].
Boller, T ;
Meier, C ;
Menzler, S .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2002, 6 (04) :509-519
[4]   Immobilizing enzymes: How to create more suitable biocatalysts [J].
Bornscheuer, UT .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (29) :3336-3337
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis [J].
Chong, ASM ;
Zhao, XS ;
Kustedjo, AT ;
Qiao, SZ .
MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 72 (1-3) :33-42
[7]   Functionalization of SBA-15 with APTES and characterization of functionalized materials [J].
Chong, ASM ;
Zhao, XS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (46) :12650-12657
[8]   Mechanistic and structural features of protein adsorption onto mesoporous silicates [J].
Deere, J ;
Magner, E ;
Wall, JG ;
Hodnett, BK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7340-7347
[9]   Adsorption and activity of cytochrome c on mesoporous silicates [J].
Deere, J ;
Magner, E ;
Wall, JG ;
Hodnett, BK .
CHEMICAL COMMUNICATIONS, 2001, (05) :465-466
[10]   Enzyme immobilization in MCM-41 molecular sieve [J].
Diaz, JF ;
Balkus, KJ .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 1996, 2 (2-3) :115-126