Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

被引:107
作者
Zhao, HJ
Hastie, T
Whitfield, ML
Borresen-Dale, AL
Jeffrey, SS
机构
[1] Stanford Univ, Med Sch Lab, Dept Surg, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[4] Univ Oslo, Norwegian Radium Hosp, Dept Genet, Oslo, Norway
关键词
D O I
10.1186/1471-2164-3-31
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results: Using an optimized protocol, the average correlation coefficient of gene expression of 11, 123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)(+) RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3-3 mug range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion: T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
Assersohn L, 2002, CLIN CANCER RES, V8, P794
[3]   Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential [J].
Clarke, PA ;
Poele, RT ;
Wooster, R ;
Workman, P .
BIOCHEMICAL PHARMACOLOGY, 2001, 62 (10) :1311-1336
[4]   The impact of genomics on drug discovery [J].
Debouck, C ;
Metcalf, B .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2000, 40 :193-207
[5]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[6]   ANALYSIS OF GENE-EXPRESSION IN SINGLE LIVE NEURONS [J].
EBERWINE, J ;
YEH, H ;
MIYASHIRO, K ;
CAO, YX ;
NAIR, S ;
FINNELL, R ;
ZETTEL, M ;
COLEMAN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (07) :3010-3014
[7]   Diversity of gene expression in adenocarcinoma of the lung [J].
Garber, ME ;
Troyanskaya, OG ;
Schluens, K ;
Petersen, S ;
Thaesler, Z ;
Pacyna-Gengelbach, M ;
van de Rijn, M ;
Rosen, GD ;
Perou, CM ;
Whyte, RI ;
Altman, RB ;
Brown, PO ;
Botstein, D ;
Petersen, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13784-13789
[8]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[9]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548
[10]  
Hegde P, 2001, CANCER RES, V61, P7792