Influence of sample cell physisorption on measurements of hydrogen storage of carbon materials using a Sieverts apparatus

被引:18
作者
Chen, Yuanzhen [1 ]
Liu, Qing [1 ]
Yan, Yisheng [1 ]
Cheng, Xiaohua [1 ]
Liu, Yongning [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
GRAPHITE NANOFIBERS; ROOM-TEMPERATURE; BWR EQUATION; NANOTUBES; CAPACITY; NANOSTRUCTURES; ADSORPTION; PRESSURE;
D O I
10.1016/j.carbon.2009.10.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, large fluctuations have been reported for measurements of the hydrogen storage of carbon materials using a Sieverts apparatus. To investigate this problem, helium gas adsorption was selected for comparison with the adsorption of hydrogen, and the results show that hydrogen but not helium was adsorbed onto the wall of the sample cell at ambient temperature. The adsorption capacity of the sample cell at 77 K is higher than that at ambient temperature. A series of adsorption tests was conducted with a LaNi5 alloy to prove the influence of the physisorption, and the results show that an increase in the hydrogen storage capacity was resulted in when sample loading decreases. After correction for this hydrogen physisorption, the capacity was restricted between 1.38 and 1.41 wt.%. Multi-walled carbon nanotubes (MWCNTs), activated carbon (AC), single-walled carbon nanotubes (SWCNTs), graphite nanofibers (GNFs), and graphite oxide (GO) were also measured and corrected through this method. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:714 / 720
页数:7
相关论文
共 29 条
[1]   Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts [J].
Blach, T. P. ;
Gray, E. MacA. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 446 :692-697
[2]   An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials [J].
Blackman, JM ;
Patrick, JW ;
Snape, CE .
CARBON, 2006, 44 (05) :918-927
[3]   The accuracy of hydrogen sorption measurements on potential storage materials [J].
Broom, D. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (18) :4871-4888
[4]   Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism [J].
Browning, DJ ;
Gerrard, ML ;
Lakeman, JB ;
Mellor, IM ;
Mortimer, RJ ;
Turpin, MC .
NANO LETTERS, 2002, 2 (03) :201-205
[5]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[6]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[7]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[8]  
Dillon A.C., 1999, P 1999 US DOE HYDR P
[9]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[10]   Hydrogen uptake in vapor-grown carbon nanofibers [J].
Fan, YY ;
Liao, B ;
Liu, M ;
Wei, YL ;
Lu, MQ ;
Cheng, HM .
CARBON, 1999, 37 (10) :1649-1652