Hidden complexity of free energy surfaces for peptide (protein) folding

被引:292
作者
Krivov, SV
Karplus, M [1 ]
机构
[1] Univ Strasbourg 1, Inst Sci & Ingn Supramol, Lab Chim Biophys, F-67000 Strasbourg, France
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1073/pnas.0406234101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they could mask the complexity of the unprojected surface. Here we introduce an approach to determine the actual (unprojected) free energy surface and apply it to the second beta-hairpin of protein G, which has been used as a model system for protein folding. The surface is represented by a disconnectivity graph calculated from a long equilibrium folding-unfolding trajectory. The denatured state is found to have multiple low free energy basins. Nevertheless, the peptide shows exponential kinetics in folding to the native basin. Projected surfaces obtained from the present analysis have a simple form in agreement with other studies of the beta-hairpin. The hidden complexity found for the beta-hairpin surface suggests that the standard funnel picture of protein folding should be revisited.
引用
收藏
页码:14766 / 14770
页数:5
相关论文
共 34 条