Self-modulated wakefield and forced laser wakefield acceleration of electrons

被引:47
作者
Najmudin, Z
Krushelnick, K
Clark, EL
Mangles, SPD
Walton, B
Dangor, AE
Fritzler, S
Malka, V
Lefebvre, E
Gordon, D
Tsung, FS
Joshi, C
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[2] Ecole Polytech, CNRS, ENSTA, Lab Opt Apliquee, F-91761 Palaiseau, France
[3] CEA, DAM Ile France, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France
[4] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.1564083
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The interaction of intense laser pulses (power>30 TW) with underdense plasmas has been studied. In the regime where the pulse length is much longer than the plasma period (tau(l)>2piomega(p)(-1)), the laser pulse is found to be self-modulated at the plasma frequency by the forward Raman scattering instability. Wavebreaking of the resulting plasma wave results in energetic electrons being accelerated to more than 100 MeV. Reducing the pulse length so that tau(l)similar to2piomega(p)(-1), but retaining the same power, also leads to wavebreaking. This is a direct result of a combination of laser beam self-focusing, front-edge laser pulse steepening and relativistic lengthening of the plasma wave wavelength, which can result in a forced growth of the wakefield plasma wave, even for initially nonresonant laser pulses (tau(l)not equalpiomega(p)(-1)). Since, in this forced laser wakefield regime, the interaction of the plasma wave and the bunch of accelerated electrons with the laser pulse is reduced, this can result in higher energy gain (to beyond 200 MeV) and better beam quality. (C) 2003 American Institute of Physics.
引用
收藏
页码:2071 / 2077
页数:7
相关论文
共 36 条
[1]  
AKHIEZER AI, 1956, ZH EKSP TEOR FIZ, V3, P696
[2]  
ANDREEV NE, 1992, JETP LETT+, V55, P571
[3]   RELATIVISTIC WAKE-FIELD GENERATION BY AN INTENSE LASER-PULSE IN A PLASMA [J].
BEREZHIANI, VI ;
MURUSIDZE, IG .
PHYSICS LETTERS A, 1990, 148 (6-7) :338-340
[4]  
BULANOV SV, 1989, JETP LETT+, V50, P198
[5]   NONLINEAR DEPLETION OF ULTRASHORT AND RELATIVISTICALLY STRONG LASER-PULSES IN AN UNDERDENSE PLASMA [J].
BULANOV, SV ;
INOVENKOV, IN ;
KIRSANOV, VI ;
NAUMOVA, NM ;
SAKHAROV, AS .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :1935-1942
[6]   Plasma wave generation in a self-focused channel of a relativistically intense laser pulse [J].
Clayton, CE ;
Tzeng, KC ;
Gordon, D ;
Muggli, P ;
Mori, WB ;
Joshi, C ;
Malka, V ;
Najmudin, Z ;
Modena, A ;
Neely, D ;
Dangor, AE .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :100-103
[7]   Well characterized 1019 W cm2 operation of VULCAN -: an ultra-high power Nd:glass laser [J].
Danson, CN ;
Collier, J ;
Neely, D ;
Barzanti, LJ ;
Damerell, A ;
Edwards, CB ;
Hutchinson, MHR ;
Key, MH ;
Norreys, PA ;
Pepler, DA ;
Ross, IN ;
Taday, PF ;
Toner, WT ;
Trentelman, M ;
Walsh, FN ;
Winstone, TB ;
Wyatt, RWW .
JOURNAL OF MODERN OPTICS, 1998, 45 (08) :1653-1669
[8]   Evolution of ultra-intense, short-pulse lasers in underdense plasmas [J].
Decker, CD ;
Mori, WB ;
Tzeng, KC ;
Katsouleas, T .
PHYSICS OF PLASMAS, 1996, 3 (05) :2047-2056
[9]   PARAMETRIC-INSTABILITIES OF ELECTROMAGNETIC-WAVES IN PLASMAS [J].
DRAKE, JF ;
KAW, PK ;
LEE, YC ;
SCHMIDT, G ;
LIU, CS ;
ROSENBLU.MN .
PHYSICS OF FLUIDS, 1974, 17 (04) :778-785
[10]   Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography [J].
Edwards, RD ;
Sinclair, MA ;
Goldsack, TJ ;
Krushelnick, K ;
Beg, FN ;
Clark, EL ;
Dangor, AE ;
Najmudin, Z ;
Tatarakis, M ;
Walton, B ;
Zepf, M ;
Ledingham, KWD ;
Spencer, I ;
Norreys, PA ;
Clarke, RJ ;
Kodama, R ;
Toyama, Y ;
Tampo, M .
APPLIED PHYSICS LETTERS, 2002, 80 (12) :2129-2131