ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain

被引:218
作者
Kasler, HG
Victoria, J
Duramad, O
Winoto, A
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Canc Res Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Immunol, Berkeley, CA 94720 USA
关键词
D O I
10.1128/MCB.20.22.8382-8389.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have shown that upregulation of the orphan steroid receptor Nur77 is required for the apoptosis of immature T cells in response to antigen receptor signals. Transcriptional upregulation of Nur77 in response to antigen receptor signaling involves two binding sites for the MEF2 family of transcription factors located in the Nur77 promoter. Calcium signals greatly increase the activity of MEF2D in T cells via a posttranslational mechanism. The mitogen-activated protein (MAP) kinase ERK5 was isolated in a yeast two-hybrid screen using the MADS-MEF2 domain of MEF2D as bait. ERK5 resembles the other MAP kinase family members in its N-terminal half, but it also contains a 400-amino-acid C-terminal domain of previously uncharacterized function. We report here that the C-terminal region of ERK5 contains a MEF2-interacting domain and, surprisingly, also a potent transcriptional activation domain. These domains are both required for coactivation of MEF2D by ERK5. The MEF2-ERK5 interaction was found to be activation dependent in vivo and inhibitable in vitro by the calcium-sensitive MEF2 repressor Cabin 1. The transcriptional activation domain of ERK5 is required for maximal MEF2 activity in response to calcium flux in T cells, and it can activate the endogenous Nur77 gene when constitutively recruited to the Nur77 promoter via MEF2 sites. These studies provide insights into a mechanism whereby MEF2 activity can respond to calcium signaling and suggest a novel, unexpected mechanism of MAP kinase function.
引用
收藏
页码:8382 / 8389
页数:8
相关论文
共 41 条
[1]   The MEF2A 3' untranslated region functions as a cis-acting translational repressor [J].
Black, BL ;
Lu, JR ;
Olson, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) :2756-2763
[2]   Ca2+-dependent gene expression mediated by MEF2 transcription factors [J].
Blaeser, F ;
Ho, N ;
Prywes, R ;
Chatila, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :197-209
[3]   PROMOTER UPSTREAM ELEMENTS OF THE CHICKEN CARDIAC MYOSIN LIGHT-CHAIN 2-A GENE INTERACT WITH TRANS-ACTING REGULATORY FACTORS FOR MUSCLE-SPECIFIC TRANSCRIPTION [J].
BRAUN, T ;
TANNICH, E ;
BUSCHHAUSENDENKER, G ;
ARNOLD, HH .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2513-2525
[4]  
CALNAN BJ, 1995, IMMUNITY, V3, P273
[5]   Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis [J].
Cheng, LEC ;
Chan, FKM ;
Cado, D ;
Winoto, A .
EMBO JOURNAL, 1997, 16 (08) :1865-1875
[6]   IDENTIFICATION OF CALCINEURIN AS A KEY SIGNALING ENZYME IN LYMPHOCYTE-T ACTIVATION [J].
CLIPSTONE, NA ;
CRABTREE, GR .
NATURE, 1992, 357 (6380) :695-697
[7]   ISOLATION OF MEK5 AND DIFFERENTIAL EXPRESSION OF ALTERNATIVELY SPLICED FORMS [J].
ENGLISH, JM ;
VANDERBILT, CA ;
XU, SC ;
MARCUS, S ;
COBB, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28897-28902
[8]   A NEW MYOCYTE-SPECIFIC ENHANCER-BINDING FACTOR THAT RECOGNIZES A CONSERVED ELEMENT ASSOCIATED WITH MULTIPLE MUSCLE-SPECIFIC GENES [J].
GOSSETT, LA ;
KELVIN, DJ ;
STERNBERG, EA ;
OLSON, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5022-5033
[9]   Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation [J].
Han, J ;
Jiang, Y ;
Li, Z ;
Kravchenko, VV ;
Ulevitch, RJ .
NATURE, 1997, 386 (6622) :296-299
[10]  
HAN TH, 1995, MOL CELL BIOL, V15, P2907