Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit

被引:47
作者
Dunham, Christine M.
Selmer, Maria
Phelps, Steven S.
Kelley, Ann C.
Suzuki, Tsutomu
Joseph, Simpson
Ramakrishnan, V.
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Tokyo, Grad Sch Engn, Dept Chem & Biotechnol, Tokyo 1138656, Japan
[3] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
基金
英国医学研究理事会;
关键词
frameshift suppressor tRNAs; ribosome; +1 frameshift; processivity errors; anticodon stem-loop;
D O I
10.1261/rna.367307
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem - loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5' - 3' nomenclature) form unpredicted anticodon - codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon - codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center.
引用
收藏
页码:817 / 823
页数:7
相关论文
共 45 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]  
BOSSI L, 1984, P NATL ACAD SCI-BIOL, V81, P6105, DOI 10.1073/pnas.81.19.6105
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
NATURE, 2000, 407 (6802) :340-348
[5]   Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus:: Purification, crystallization and structure determination [J].
Clemons, WM ;
Brodersen, DE ;
McCutcheon, JP ;
May, JLC ;
Carter, AP ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (04) :827-843
[6]   NUCLEOTIDE-SEQUENCE OF THE SUF2 FRAMESHIFT SUPPRESSOR GENE OF SACCHAROMYCES-CEREVISIAE [J].
CUMMINS, CM ;
DONAHUE, TF ;
CULBERTSON, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (11) :3565-3569
[7]   READING FRAME SELECTION AND TRANSFER-RNA ANTICODON LOOP STACKING [J].
CURRAN, JF ;
YARUS, M .
SCIENCE, 1987, 238 (4833) :1545-1550
[8]  
DeLano W. L., 2002, PYMOL
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]   Programmed translational frameshifting [J].
Farabaugh, PJ .
ANNUAL REVIEW OF GENETICS, 1996, 30 :507-528