Computational design of a water-soluble analog of phospholamban

被引:38
作者
Slovic, AM [1 ]
Summa, CM [1 ]
Lear, JD [1 ]
DeGrado, WF [1 ]
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
protein design; computational methods; phospholamban; water-soluble membrane protein;
D O I
10.1110/ps.0226603
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane proteins and water-soluble proteins share a similar core. This similarity suggests that it should be possible to water-solubilize membrane proteins by mutating only their lipid-exposed residues. We have developed computational tools to design water-soluble variants of helical membrane proteins, using the pentameric phospholamban (PLB) as our test case. To water-solublize PLB, the membrane-exposed positions were changed to polar or charged amino acids, while the putative core was left unaltered. We generated water-soluble phospholamban (WSPLB), and compared its properties to its predecessor PLB. In aqueous solution, WSPLB mimics all of the reported properties of PLB including oligomerization state, helical structure, and stabilization upon phosphorylation. We also characterized the truncated mutant WSPLB (21-52) comprising only the former transmembrane segment of PLB. This peptide shows a decreased specificity for forming a pentameric oligomerization state.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 68 条
[1]   STRUCTURAL MODEL OF THE PHOSPHOLAMBAN ION-CHANNEL COMPLEX IN PHOSPHOLIPID-MEMBRANES [J].
ARKIN, IT ;
ROTHMAN, M ;
LUDLAM, CFC ;
AIMOTO, S ;
ENGELMAN, DM ;
ROTHSCHILD, KJ ;
SMITH, SO .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 248 (04) :824-834
[2]   STRUCTURAL ORGANIZATION OF THE PENTAMERIC TRANSMEMBRANE ALPHA-HELICES OF PHOSPHOLAMBAN, A CARDIAC ION-CHANNEL [J].
ARKIN, IT ;
ADAMS, PD ;
MACKENZIE, KR ;
LEMMON, MA ;
BRUNGER, AT ;
ENGELMAN, DM .
EMBO JOURNAL, 1994, 13 (20) :4757-4764
[3]   Thermodynamic analysis of a designed three-stranded coiled coil [J].
Boice, JA ;
Dieckmann, GR ;
DeGrado, WF ;
Fairman, R .
BIOCHEMISTRY, 1996, 35 (46) :14480-14485
[4]   Helix packing in membrane proteins [J].
Bowie, JU .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (05) :780-789
[5]   Maximal inhibition of SERCA2 Ca2+ affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban [J].
Brittsan, AG ;
Carr, AN ;
Schmidt, AG ;
Kranias, EG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (16) :12129-12135
[6]  
BROOKS IS, 1993, BIOPHYS J, V64, pA244
[7]  
CANTILINA T, 1993, J BIOL CHEM, V268, P17018
[8]   LARGE DIFFERENCES IN THE HELIX PROPENSITIES OF ALANINE AND GLYCINE [J].
CHAKRABARTTY, A ;
SCHELLMAN, JA ;
BALDWIN, RL .
NATURE, 1991, 351 (6327) :586-588
[9]   A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to β-agonists [J].
Chu, GX ;
Lester, JW ;
Young, KB ;
Luo, WS ;
Zhai, J ;
Kranias, EG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38938-38943
[10]   Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers [J].
Cornea, RL ;
Jones, LR ;
Autry, JM ;
Thomas, DD .
BIOCHEMISTRY, 1997, 36 (10) :2960-2967