Normal ovarian functions are regulated by a wide variety of endocrine hormones, local paracrine and autocrine factors, which functionally interact with each other in a highly coordinated fashion. Recent findings have demonstrated that both forms of gonadotropin-releasing hormone (GnRH-I and GnRH-II) are expressed in various compartments of the human ovary including the granulosa-luteal cells, ovarian surface epithelial cells and ovarian tumors, and their expressions have been shown to be tightly regulated by gonadal steroids and gonadotropins. Functionally, these neuropeptides exert diverse biological effects in the ovary via binding to their cognate receptors, supporting the notion that these peptides act as paracrine and autocrine factors in modulating local ovarian functions. In this review, we will summarize recent literatures regarding the regulation of GnRH-I and GnRH-II gene expressions in the human ovary, and discuss the possible signal transduction mechanisms by which these hormones exert their actions in the gonad. Recent cloning of the second form of the GnRH receptor (GnRH-II receptor) in primates and other vertebrates demonstrated that it was structurally, and thus, functionally distinct from the GnRH-I receptor. Cell proliferation studies showed that GnRH-II inhibited the growth of human ovarian cancer cells that express GnRH-II but not GnRH-I receptor, indicating that the GnRH-II binding sites are functional in these cells. However, it remains unknown if GnRH-II receptor is expressed as a full-length, properly processed and functional gene transcript in humans, and its potential physiological roles such as differential regulation of gonadotropin secretion, neuroendocrine modulation and female sexual behavior await further investigation. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.