The Transcription Factor DksA Prevents Conflicts between DNA Replication and Transcription Machinery

被引:124
作者
Tehranchi, Ashley K. [1 ]
Blankschien, Matthew D. [1 ]
Zhang, Yan [2 ]
Halliday, Jennifer A. [1 ]
Srivatsan, Anjana [1 ]
Peng, Jia [1 ]
Herman, Christophe [1 ,3 ]
Wang, Jue D. [1 ,2 ,3 ]
机构
[1] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[2] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA
关键词
COLI RNA-POLYMERASE; HEAD-ON COLLISION; GUANOSINE TETRAPHOSPHATE; TERMINATION EFFICIENCY; BACILLUS-SUBTILIS; FORK PROGRESSION; BETA-SUBUNIT; PPGPP; INITIATION; GENE;
D O I
10.1016/j.cell.2010.03.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Actively dividing cells perform robust and accurate DNA replication during fluctuating nutrient availability, yet factors that prevent disruption of replication remain largely unknown. Here we report that DksA, a nutrient-responsive transcription factor, ensures replication completion in Escherichia coli by removing transcription roadblocks. In the absence of DksA, replication is rapidly arrested upon amino acid starvation. This arrest requires active transcription and is alleviated by RNA polymerase mutants that compensate for DksA activity. This replication arrest occurs independently of exogenous DNA damage, yet it induces the DNA-damage response and recruits the main recombination protein RecA. This function of DksA is independent of its transcription initiation activity but requires its less-studied transcription elongation activity. Finally, GreA/B elongation factors also prevent replication arrest during nutrient stress. We conclude that transcription elongation factors alleviate fundamental conflicts between replication and transcription, thereby protecting replication fork progression and DNA integrity.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 76 条
[1]   Regulation of the fimB promoter:: a case of differential regulation by ppGpp and DksA in vivo [J].
Aberg, Anna ;
Shingler, Victoria ;
Balsalobre, Carlos .
MOLECULAR MICROBIOLOGY, 2008, 67 (06) :1223-1241
[2]   Genome instability:: a mechanistic view of its causes and consequences [J].
Aguilera, Andres ;
Gomez-Gonzalez, Belen .
NATURE REVIEWS GENETICS, 2008, 9 (03) :204-217
[3]  
[Anonymous], ESCHERICHIA COLI SAL
[4]   RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro [J].
Artsimovitch, I ;
Svetlov, V ;
Anthony, L ;
Burgess, RR ;
Landick, R .
JOURNAL OF BACTERIOLOGY, 2000, 182 (21) :6027-6035
[5]   Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals [J].
Artsimovitch, I ;
Landick, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7090-7095
[6]   Highly Transcribed RNA Polymerase II Genes Are Impediments to Replication Fork Progression in Saccharomyces cerevisiae [J].
Azvolinsky, Anna ;
Giresi, Paul G. ;
Lieb, Jason D. ;
Zakian, Virginia A. .
MOLECULAR CELL, 2009, 34 (06) :722-734
[7]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[8]   Mechanism of regulation of transcription initiation by ppGpp.: I.: Effects of ppGpp on transcription initiation in vivo and in vitro [J].
Barker, MM ;
Gaal, T ;
Josaitis, CA ;
Gourse, RL .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) :673-688
[9]   Replication fork collapse at replication terminator sequences [J].
Bidnenko, V ;
Ehrlich, SD ;
Michel, B .
EMBO JOURNAL, 2002, 21 (14) :3898-3907
[10]   Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12 [J].
Bipatnath, M ;
Dennis, PP ;
Bremer, H .
JOURNAL OF BACTERIOLOGY, 1998, 180 (02) :265-273