Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding

被引:716
作者
Zhang, Hao-Bin [1 ]
Zheng, Wen-Ge [1 ]
Yan, Qing [1 ]
Yang, Yong [1 ]
Wang, Ji-Wen [1 ]
Lu, Zhao-Hui [1 ]
Ji, Guo-Ying [1 ]
Yu, Zhong-Zhen [2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Div Polymers & Composites, Ningbo Key Lab Polymer Mat, Ningbo 315201, Zhejiang, Peoples R China
[2] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Dept Polymer Engn, Beijing Key Lab Preparat & Proc Novel Polymer Mat, Beijing 100029, Peoples R China
关键词
Graphene; Electrical conductivity; Melt compounding; GRAPHITE NANOCOMPOSITES; COMPOSITE-MATERIALS; FUNCTIONALIZED GRAPHENE; TRANSPORT BEHAVIOR; CARBON NANOTUBES; POLYMERIZATION; MORPHOLOGY; THRESHOLD; EXPONENTS; FIBERS;
D O I
10.1016/j.polymer.2010.01.027
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction. Polyethylene terephthalate (PET)/graphene nanocomposites were prepared by melt compounding. Transmission electron microscopy observation indicated that graphene nanosheets exhibited a uniform dispersion in PET matrix. The incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%. A high electrical conductivity of 2.11 S/m was achieved with only 3.0 vol.% of graphene. The low percolation threshold and superior electrical conductivity are attributed to the high aspect ratio, large specific surface area and uniform dispersion of the graphene nanosheets in PET matrix. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1191 / 1196
页数:6
相关论文
共 48 条
[1]   Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites:: Recovery after shear and crystallization [J].
Alig, Ingo ;
Lellinger, Dirk ;
Dudkin, Sergej M. ;
Poetschke, Petra .
POLYMER, 2007, 48 (04) :1020-1029
[2]   Percolative properties of hard oblate ellipsoids of revolution with a soft shell [J].
Ambrosetti, Gianluca ;
Johner, Niklaus ;
Grimaldi, Claudio ;
Danani, Andrea ;
Ryser, Peter .
PHYSICAL REVIEW E, 2008, 78 (06)
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   TUNNELING AND NONUNIVERSAL CONDUCTIVITY IN COMPOSITE-MATERIALS [J].
BALBERG, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (12) :1305-1308
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]   Buckle or break [J].
Carlsson, Johan M. .
NATURE MATERIALS, 2007, 6 (11) :801-802
[7]   CRYSTALLIZATION OF POLYETHYLENE TEREPHTHALATE [J].
COBBS, WH ;
BURTON, RL .
JOURNAL OF POLYMER SCIENCE, 1953, 10 (03) :275-290
[8]   GEOMETRICAL PERCOLATION-THRESHOLD OF OVERLAPPING ELLIPSOIDS [J].
GARBOCZI, EJ ;
SNYDER, KA ;
DOUGLAS, JF ;
THORPE, MF .
PHYSICAL REVIEW E, 1995, 52 (01) :819-828
[9]   DIFFERENCES BETWEEN LATTICE AND CONTINUUM PERCOLATION TRANSPORT EXPONENTS [J].
HALPERIN, BI ;
FENG, S ;
SEN, PN .
PHYSICAL REVIEW LETTERS, 1985, 54 (22) :2391-2394
[10]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59