Characterization of naturally occurring and recombinant human N-acetyltransferase variants encoded by NAT1

被引:45
作者
de León, JH [1 ]
Vatsis, KP [1 ]
Weber, WW [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Pharmacol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1124/mol.58.2.288
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The genotype at the NAT1* locus of an interethnic population of 38 unrelated subjects was determined by direct sequencing of 1.6-kb fragments amplified by PCR. The coding exon alone and together with the 3' noncoding exon of the wild-type (NAT1*4) and the three mutant alleles (NAT1*10, *11, and *16) detected was expressed in Escherichia coli and COS-1 cells, respectively, and the cytosolic fraction of mononuclear leukocytes from NAT1*4/*4 and NAT1*10/*10 homozygotes was also isolated. Recombinant and leukocyte cytosolic preparations were thoroughly characterized by N-acetylation activity with several NAT1-specific and -selective substrates, as well as by steady-state kinetics with varying amounts of the substrate (fixed acetyl CoA) and acetyl CoA (fixed substrate), thermodynamics, stability, and protein immunoreactivity with a polyclonal human anti-NAT1. The polyadenylation signal mutation in the 3' non-coding sequence of NAT1*10 affected none of the aforementioned parameters evaluated both with recombinant NAT1*10 and with the naturally occurring allele. Function was also unaffected by the coding and 3' noncoding exon mutations in NAT1*11. In contrast, the three extra adenosines located immediately after the sixth position of the polyadenylation signal in the 3' untranslated region of NAT1*16 ostensibly caused disruption of the predicted secondary structure of the pre-mRNA for NAT1 16, culminating in parallel 2-fold decreases in the amount and catalytic activity of NAT1 16 in COS-1 cell cytosol. This novel finding in N-acetylation pharmacogenetics clearly demonstrates a direct link between reduced catalytic activity and structural alteration in the 3' untranslated region of an NAT variant (NAT1*16) brought about by mutation.
引用
收藏
页码:288 / 299
页数:12
相关论文
共 38 条
[1]  
AKADA R, 1994, BIOTECHNIQUES, V17, P58
[2]   NEW SPECTROPHOTOMETRIC AND RADIOCHEMICAL ASSAYS FOR ACETYL-COA - ARYLAMINE N-ACETYLTRANSFERASE APPLICABLE TO A VARIETY OF ARYLAMINES [J].
ANDRES, HH ;
KLEM, AJ ;
SZABO, SM ;
WEBER, WW .
ANALYTICAL BIOCHEMISTRY, 1985, 145 (02) :367-375
[3]  
BELL DA, 1995, CANCER RES, V55, P5226
[4]   A CONSERVED HAIRPIN STRUCTURE PREDICTED FOR THE POLY(A) SIGNAL OF HUMAN AND SIMIAN IMMUNODEFICIENCY VIRUSES [J].
BERKHOUT, B ;
KLAVER, BEP ;
DAS, AT .
VIROLOGY, 1995, 207 (01) :276-281
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   EFFECT OF RNA SECONDARY STRUCTURE ON POLYADENYLATION SITE SELECTION [J].
BROWN, PH ;
TILEY, LS ;
CULLEN, BR .
GENES & DEVELOPMENT, 1991, 5 (07) :1277-1284
[7]   Functional polymorphism of the human arylamine N-acetyltransferase type 1 gene caused by C190T and G560A mutations [J].
Butcher, NJ ;
Ilett, KF ;
Minchin, RF .
PHARMACOGENETICS, 1998, 8 (01) :67-72
[8]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[9]  
CLELAND WW, 1967, ADV ENZYMOL RAMB, V29, P1
[10]  
CRIBB AE, 1991, J PHARMACOL EXP THER, V259, P1241