Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the and disruption of mitotic cohesin complex progression

被引:83
作者
Vass, S
Cotterill, S
Valdeolmillos, AM
Barbero, JL
Lin, E
Warren, WD
Heck, MMS
机构
[1] Univ Edinburgh, Inst Cell & Mol Biol, Wellcome Trust Ctr Mol Biol, Edinburgh EH9 3JR, Midlothian, Scotland
[2] St George Hosp, Sch Med, Dept Biochem & Immunol, London SW17 ORE, England
[3] Peter MacCallum Canc Inst, Trescowthick Res Labs, Melbourne, Vic 3002, Australia
[4] Ctr Nacl Biotecnol, Dept Immunol & Oncol, E-28049 Madrid, Spain
基金
英国惠康基金;
关键词
D O I
10.1016/S0960-9822(03)00047-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The coordination of cell cycle events is necessary to ensure the proper duplication and dissemination of the genome. In this study, we examine the consequences of depleting Drad21 and SA, two non-SMC subunits of the cohesin complex, by dsRNA-mediated interference in Drosophila cultured cells. Results: We have shown that a bona fide cohesin complex exists in Drosophila embryos. Strikingly, the Drad21/Scc1 and SA/Scc3 non-SMC subunits associate more intimately With one another than they do with the SMCs. We have observed defects in mitotic progression in cells from which Drad21 has been depleted: cells delay in prometaphase with normally condensed, but prematurely separated, sister chromatids and with abnormal spindle morphology. Much milder defects are observed when SA is depleted from cells. The dynamics of the chromosome passenger protein, INCENP, are affected after Drad21 depletion. We have also made the surprising observation that SA is unstable in the absence of Drad21; however, we have shown that the converse is not true. Interference with Drad21 in living Drosophila embryos also has deleterious effects on mitotic progression. Conclusions: We conclude that Drad21, as a member of a cohesin complex, is required in Drosophila cultured cells and embryos for proper mitotic progression. The protein is required in cultured cells for chromosome cohesion, spindle morphology, dynamics of a chromosome passenger protein, and stability of the cohesin complex but apparently not for normal chromosome condensation. The observation of SA instability in the absence of Drad21 implies that the expression of cohesin subunits and assembly of the cohesin complex will be tightly regulated.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 43 条
[1]   INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow [J].
Adams, RR ;
Wheatley, SP ;
Gouldsworthy, AM ;
Kandels-Lewis, SE ;
Carmena, M ;
Smythe, C ;
Gerloff, DL ;
Earnshaw, WD .
CURRENT BIOLOGY, 2000, 10 (17) :1075-1078
[2]   Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation [J].
Adams, RR ;
Maiato, H ;
Earnshaw, WC ;
Carmena, M .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :865-879
[3]   CLONING AND CHARACTERIZATION OF RAD21 AN ESSENTIAL GENE OF SCHIZOSACCHAROMYCES-POMBE INVOLVED IN DNA DOUBLE-STRAND-BREAK REPAIR [J].
BIRKENBIHL, RP ;
SUBRAMANI, S .
NUCLEIC ACIDS RESEARCH, 1992, 20 (24) :6605-6611
[4]   Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region [J].
Blat, Y ;
Kleckner, N .
CELL, 1999, 98 (02) :249-259
[5]   The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions [J].
Blower, MD ;
Karpen, GH .
NATURE CELL BIOLOGY, 2001, 3 (08) :730-739
[6]   dsRNA-mediated gene silencing in cultured Drosophila cells:: a tissue culture model for the analysis of RNA interference [J].
Caplen, NJ ;
Fleenor, J ;
Fire, A ;
Morgan, RA .
GENE, 2000, 252 (1-2) :95-105
[7]   A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior [J].
Clarkson, M ;
Saint, R .
DNA AND CELL BIOLOGY, 1999, 18 (06) :457-462
[8]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503
[9]   SMCs in the world of chromosome biology - From prokaryotes to higher eukaryotes [J].
Cobbe, N ;
Heck, MMS .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 129 (2-3) :123-143
[10]   The making and breaking of sister chromatid cohesion [J].
Cohen-Fix, O .
CELL, 2001, 106 (02) :137-140