Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila

被引:220
作者
Foley, E [1 ]
O'Farrell, PH [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
Drosophila; nitric oxide; signaling; innate immunity; hemocyte; Relish;
D O I
10.1101/gad.1018503
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Studies in mammals uncovered important signaling roles of nitric oxide (NO), and contributions to innate immunity. Suggestions of conservation led us to explore the involvement of NO in Drosophila innate immunity. Inhibition of nitric oxide synthase (NOS) increased larval sensitivity to gram-negative bacterial infection, and abrogated induction of the antimicrobial peptide Diptericin. NOS was up-regulated after infection. Antimicrobial peptide reporters revealed that NO triggered an immune response in uninfected larvae. NO induction of Diptericin reporters in the fat body required immune deficiency (imd) and domino. These findings show that NOS activity is required for a robust innate immune response to gram-negative bacteria, NOS is induced by infection, and NO is sufficient to trigger response in the absence of infection. We propose that NO mediates an early step of the signal transduction pathway, inducing the innate immune response upon natural infection with gram-negative bacteria.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 54 条
[1]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[2]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[3]   The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response [J].
Basset, A ;
Khush, RS ;
Braun, A ;
Gardan, L ;
Boccard, F ;
Hoffmann, JA ;
Lemaitre, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3376-3381
[4]   Nitric oxide and the immune response [J].
Bogdan, C .
NATURE IMMUNOLOGY, 2001, 2 (10) :907-916
[5]   Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes [J].
Braun, A ;
Hoffmann, JA ;
Meister, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14337-14342
[6]   NITRIC-OXIDE - A PHYSIOLOGICAL MESSENGER MOLECULE [J].
BREDT, DS ;
SNYDER, SH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1994, 63 :175-195
[7]   Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila [J].
Choe, KM ;
Werner, T ;
Stöven, S ;
Hultmark, D ;
Anderson, KV .
SCIENCE, 2002, 296 (5566) :359-362
[8]   NITRIC-OXIDE SYNTHASE AND NEURONAL NADPH DIAPHORASE ARE IDENTICAL IN BRAIN AND PERIPHERAL-TISSUES [J].
DAWSON, TM ;
BREDT, DS ;
FOTUHI, M ;
HWANG, PM ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (17) :7797-7801
[9]   Nitric oxide functions as a signal in plant disease resistance [J].
Delledonne, M ;
Xia, YJ ;
Dixon, RA ;
Lamb, C .
NATURE, 1998, 394 (6693) :585-588
[10]   Requirement for type 2 NO synthase for IL-12 signaling in innate immunity [J].
Diefenbach, A ;
Schindler, H ;
Röllinghoff, M ;
Yokoyama, WM ;
Bogdan, C .
SCIENCE, 1999, 284 (5416) :951-955