High-resolution 3-D flood information from radar imagery for flood hazard management

被引:127
作者
Schumann, Guy [1 ]
Hostache, Renaud
Puech, Christian
Hoffmann, Lucien
Matgen, Patrick
Pappenberger, Florian
Pfister, Laurent
机构
[1] Publ Res Ctr Gabriel Lippmann, EVA Dept, L-4422 Belvaux, Luxembourg
[2] Univ Dundee, Dept Geog, Dundee DD1 4HN, Scotland
[3] Irstea, Maison Teledetect, F-34093 Montpellier, France
[4] Univ Lancaster, Dept Environm Sci, Hydrol & Fluid Dynam Grp, Lancaster LA1 4YQ, England
[5] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2007年 / 45卷 / 06期
关键词
flood information mapping; light detecting and ranging (lidar) digital elevation model (DEM); regression analysis; synthetic aperture radar (SAR); SAR data uncertainty; 1-D hydraulic model;
D O I
10.1109/TGRS.2006.888103
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a remote-sensing-based steady-state flood inundation model to improve preventive flood-management strategies and flood disaster management. The Regression and Elevation-based Flood Information eXtraction (REFIX) model is based on regression analysis and uses a remotely sensed flood extent and a high-resolution floodplain digital elevation model to compute flood depths for a given flood event. The root mean squared error of the REFIX, compared to ground-surveyed high water marks, is 18 cm for the January 2003 flood event on the River Alzette floodplain (G.D. of Luxembourg, on which the model is developed. Applying the same methodology on a reach of the River Mosel, France, shows that for some more complex river configurations (in this case, a meandering river reach that contains a number of hydraulic structures), piecewise regression is required to yield more accurate flood water-line estimations. A comparison with a simulation from the Hydrologic Engineering Centers River Analysis System hydraulic flood model, calibrated on the same events, shows that, for both events, the REFIX model approximates the water line reliably.
引用
收藏
页码:1715 / 1725
页数:11
相关论文
共 32 条
  • [1] Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE
    Aronica, G
    Bates, PD
    Horritt, MS
    [J]. HYDROLOGICAL PROCESSES, 2002, 16 (10) : 2001 - 2016
  • [2] Bates PD, 1997, HYDROL PROCESS, V11, P1777, DOI 10.1002/(SICI)1099-1085(199711)11:14&lt
  • [3] 1777::AID-HYP543&gt
  • [4] 3.0.CO
  • [5] 2-E
  • [6] Orbital SAR remote sensing of a river flood wave
    Brakenridge, GR
    Tracy, BT
    Knox, JC
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (07) : 1439 - 1445
  • [7] Deshmukh K. S., 2005, ELECT LETT COMPUTER, V5, P12, DOI DOI 10.5565/REV/ELCVIA.115
  • [8] Simulating the spatio-temporal variability of streamflow response to climate change scenarios in a mesoscale basin
    Drogue, G
    Pfister, L
    Leviandier, T
    El Idrissi, A
    Iffly, JF
    Matgen, P
    Humbert, J
    Hoffmann, L
    [J]. JOURNAL OF HYDROLOGY, 2004, 293 (1-4) : 255 - 269
  • [9] Haase D, 2005, ADV GEOSCI, V5, P65, DOI [10.5194/adgeo-5-65-2005, DOI 10.5194/ADGEO-5-65-2005]
  • [10] Envisat multi-polarized ASAR data for flood mapping
    Henry, J. -B.
    Chastanet, P.
    Fellah, K.
    Desnos, Y. -L.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (9-10) : 1921 - 1929