Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites

被引:21
作者
Bassil, A [1 ]
Puech, P
Landa, G
Bacsa, W
Barrau, S
Demont, P
Lacabanne, C
Perez, E
Bacsa, R
Flahaut, E
Peigney, A
Laurent, C
机构
[1] Univ Toulouse 3, LPST, IRSAMC, UMR 5477, F-31062 Toulouse 4, France
[2] Univ Toulouse 3, LPP, CIRIMAT, CNRS,UMR 5085, F-31062 Toulouse 4, France
[3] Univ Toulouse 3, IMRCP, CNRS, UMR 5623, F-31062 Toulouse 4, France
[4] Univ Toulouse 3, LCMIE, CIRIMAT, CNRS,UMR 5085, F-31062 Toulouse 4, France
关键词
D O I
10.1063/1.1846136
中图分类号
O59 [应用物理学];
学科分类号
摘要
Incorporation of carbon nanotubes into epoxy resin composites has the effect of increasing electrical conductivity at low percolation levels. An amphiphilic molecule such as palmitic acid has been used to increase the surface contact area and to improve the dispersion of the carbon nanotube bundles in the prepolymer. The chemical environment of the dispersed nanotubes has been probed using vibrational Raman spectroscopy. Spectroscopic Raman maps on sample surfaces (60x60 mum(2)) with ratios of nanotubes to palmitic acid varying from 1:2 to 2:1 by weight, have been recorded to test the uniformity of the dispersion. Substantial spatial inhomogeneities have been observed in the G-band shift and an additional spectral band at 1450 cm(-1). The 1450 cm(-1) band has been attributed to the CH3 group of the amphiphilic molecules adsorbed onto the nanotube surface. The maps are correlated with the measured electrical conductivity values. The highest conductivity has been observed for the best dispersed nanotubes and nanotubes with the highest degree of interaction. (C) 2005 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 29 条
[1]   High specific surface area carbon nanotubes from catalytic chemical vapor deposition process [J].
Bacsa, RR ;
Laurent, C ;
Peigney, A ;
Bacsa, WS ;
Vaugien, T ;
Rousset, A .
CHEMICAL PHYSICS LETTERS, 2000, 323 (5-6) :566-571
[2]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[3]   Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites [J].
Barrau, S ;
Demont, P ;
Perez, E ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (26) :9678-9680
[4]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[5]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[6]   Detachment of nanotubes from a polymer matrix [J].
Cooper, CA ;
Cohen, SR ;
Barber, AH ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2002, 81 (20) :3873-3875
[7]   Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing [J].
Cui, S ;
Canet, R ;
Derre, A ;
Couzi, M ;
Delhaes, P .
CARBON, 2003, 41 (04) :797-809
[8]   Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes [J].
Flahaut, E ;
Peigney, A ;
Laurent, C ;
Rousset, A .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (02) :249-252
[9]   Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives [J].
Georgakilas, V ;
Gournis, D ;
Karakassides, MA ;
Bakandritsos, A ;
Petridis, D .
CARBON, 2004, 42 (04) :865-870
[10]   Surfactant-assisted processing of carbon nanotube/polymer composites [J].
Gong, XY ;
Liu, J ;
Baskaran, S ;
Voise, RD ;
Young, JS .
CHEMISTRY OF MATERIALS, 2000, 12 (04) :1049-1052