Adhesive dynamics simulations of sialyl-Lewisx/E-selectin-mediated rolling in a cell-free system

被引:75
作者
Chang, KC [1 ]
Hammer, DA [1 ]
机构
[1] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1016/S0006-3495(00)76439-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 Angstrom, close to that reported in the literature for E-selectin and its natural ligand (0.3 Angstrom). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for the formation of sLe(x)/E-selectin bonds.
引用
收藏
页码:1891 / 1902
页数:12
相关论文
共 49 条
[1]   The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes [J].
Alon, R ;
Chen, SQ ;
Fuhlbrigge, R ;
Puri, KD ;
Springer, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11631-11636
[2]   The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling [J].
Alon, R ;
Chen, SQ ;
Puri, KD ;
Finger, EB ;
Springer, TA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (05) :1169-1180
[3]   LIFETIME OF THE P-SELECTIN-CARBOHYDRATE BOND AND ITS RESPONSE TO TENSILE FORCE IN HYDRODYNAMIC FLOW [J].
ALON, R ;
HAMMER, DA ;
SPRINGER, TA .
NATURE, 1995, 374 (6522) :539-542
[4]   THE INTEGRIN VLA-4 SUPPORTS TETHERING AND ROLLING IN FLOW ON VCAM-1 [J].
ALON, R ;
KASSNER, PD ;
CARR, MW ;
FINGER, EB ;
HEMLER, ME ;
SPRINGER, TA .
JOURNAL OF CELL BIOLOGY, 1995, 128 (06) :1243-1253
[5]   Energy dissipation during rupture of adhesive bonds [J].
Baljon, ARC ;
Robbins, MO .
SCIENCE, 1996, 271 (5248) :482-484
[6]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[8]   Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands [J].
Brunk, DK ;
Hammer, DA .
BIOPHYSICAL JOURNAL, 1997, 72 (06) :2820-2833
[9]   Sialyl Lewis(x)/E-selectin-mediate rolling in a cell-free system [J].
Brunk, DK ;
Goetz, DJ ;
Hammer, DA .
BIOPHYSICAL JOURNAL, 1996, 71 (05) :2902-2907
[10]  
BRUNK DK, 1996, THESIS CORNELL U ITH