Inconsistency in the application of the adiabatic theorem

被引:157
作者
Marzlin, KP [1 ]
Sanders, BC [1 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1103/PhysRevLett.93.160408
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adiabatic theorem states that an initial eigenstate of a slowly varying Hamiltonian remains close to an instantaneous eigenstate of the Hamiltonian at a later time. We show that a perfunctory application of this statement is problematic if the change in eigenstate is significant, regardless of how closely the evolution satisfies the requirements of the adiabatic theorem. We also introduce an example of a two-level system with an exactly solvable evolution to demonstrate the inapplicability of the adiabatic approximation for a particular slowly varying Hamiltonian.
引用
收藏
页码:160408 / 1
页数:4
相关论文
共 21 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49
[4]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[5]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210
[6]  
Ehrenfest P, 1916, ANN PHYS-BERLIN, V51, P327
[7]  
FARHI E, QUANTPH0001106
[8]   BOUND STATES IN QUANTUM FIELD THEORY [J].
GELLMANN, M ;
LOW, F .
PHYSICAL REVIEW, 1951, 84 (02) :350-354
[9]   ON THE ADIABATIC THEOREM OF QUANTUM MECHANICS [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1950, 5 (06) :435-439
[10]  
Landau L., 1932, Phys. Z. Sowjetunion, V2, P118, DOI DOI 10.1098/RSPA.1932.0165