Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors

被引:39
作者
Parrish, J
Metters, H
Chen, L
Xue, D [1 ]
机构
[1] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1073/pnas.210391597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Demonstrating in vivo interaction of two important biomolecules and the relevance of the interaction to a biological process have been difficult issues in biomedical research. Here, we report the use of a homology modeling approach to establish the significance of protein interactions in governing the activation of programmed cell death in Caenorhabditis elegans. A protein interaction cascade has been postulated to mediate activation of cell death in nematodes, in which the BH3-domain-containing (Bcl-2 homology region 3) protein EGL-1 binds the cell-death inhibitor CED-9 and induces release of the death-activating protein CED-4 from inhibitory CED-4/CED-9 complexes. We show here that an unusual gain-of-function:mutation in ced-9 (substitution of glycine 169 to glutamate) that results in potent inhibition of most nematode cell deaths impairs the binding of EGL-1 to CED-9 and ECL-1-induced release of CED-4 from CED-4/CED-9 complexes. Based on a modeled EGL-1/CED-9 complex structure, we generated second-site compensatory mutations in EGL-1 that partially restore the binding of EGL-1 to CED-9(G169E) and EGL-1-induced release of CED-4 from CED-4/CED-9(G169E) complexes. Importantly, these mutations also significantly suppress the death-protective activity of CED-9(G169E) in vivo. These results establish that direct physical interaction between EGL-1 and CED-9 is essential for the release of CED-4 and the activation of cell death. The structure-based design of second-site suppressors via homology modeling should be widely applicable for probing important molecular interactions that are implicated in fundamental biological processes.
引用
收藏
页码:11916 / 11921
页数:6
相关论文
共 36 条
[1]   The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation [J].
Bloom, L ;
Horvitz, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :3414-3419
[2]   BCL-X, A BCL-2-RELATED GENE THAT FUNCTIONS AS A DOMINANT REGULATOR OF APOPTOTIC CELL-DEATH [J].
BOISE, LH ;
GONZALEZGARCIA, M ;
POSTEMA, CE ;
DING, LY ;
LINDSTEN, T ;
TURKA, LA ;
MAO, XH ;
NUNEZ, G ;
THOMPSON, CB .
CELL, 1993, 74 (04) :597-608
[3]   Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death [J].
Chen, FL ;
Hersh, BM ;
Conradt, B ;
Zhou, Z ;
Riemer, D ;
Gruenbaum, Y ;
Horvitz, HR .
SCIENCE, 2000, 287 (5457) :1485-1489
[4]   Solution structure of BID, an intracellular amplifier of apoptotic signaling [J].
Chou, JJ ;
Li, HL ;
Salvesen, GS ;
Yuan, JY ;
Wagner, G .
CELL, 1999, 96 (05) :615-624
[5]   The C-elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9 [J].
Conradt, B ;
Horvitz, HR .
CELL, 1998, 93 (04) :519-529
[6]   The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene [J].
Conradt, B ;
Horvitz, HR .
CELL, 1999, 98 (03) :317-327
[7]   GENETIC-CONTROL OF PROGRAMMED CELL-DEATH IN THE NEMATODE C-ELEGANS [J].
ELLIS, HM ;
HORVITZ, HR .
CELL, 1986, 44 (06) :817-829
[8]   MECHANISMS AND FUNCTIONS OF CELL-DEATH [J].
ELLIS, RE ;
YUAN, JY ;
HORVITZ, HR .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :663-698
[9]   BCL-2 family members and the mitochondria in apoptosis [J].
Gross, A ;
McDonnell, JM ;
Korsmeyer, SJ .
GENES & DEVELOPMENT, 1999, 13 (15) :1899-1911
[10]   Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction [J].
Gu, T ;
Orita, S ;
Han, M .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (08) :4556-4564