Bound water in the proton translocation mechanism of the haem-copper oxidases

被引:132
作者
Riistama, S
Hummer, G
Puustinen, A
Dyer, RB
Woodruff, WH
Wikstrom, M
机构
[1] UNIV HELSINKI,HELSINKI BIOENERGET GRP,DEPT MED CHEM,INST BIOMED SCI,FI-00014 HELSINKI,FINLAND
[2] UNIV HELSINKI,BIOCENTRUM HELSINKI,FI-00014 HELSINKI,FINLAND
[3] LOS ALAMOS NATL LAB,CHEM SCI & TECHNOL DIV,LOS ALAMOS,NM 87545
[4] LOS ALAMOS NATL LAB,THEORET BIOL & BIOPHYS GRP,LOS ALAMOS,NM 87545
关键词
proton translocation mechanism; haem-copper oxidase;
D O I
10.1016/S0014-5793(97)01003-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We address the molecular mechanism by which the haem-copper oxidases translocate protons, Reduction of O-2 to water takes place at a haem iron-copper (CUB) centre, and protons enter from one side of the membrane through a 'channel' structure in the enzyme, Statistical-mechanical calculations predict bound mater molecules within this channel, and mutagenesis experiments show that breaking this mater structure impedes proton translocation, Hydrogen-bonded mater molecules connect the channel further via a conserved glutamic acid residue to a histidine ligand of Cu-B, The glutamic acid side chain may have to move during proton transfer because proton translocation is abolished if it is forced to interact with a nearby lysine or arginine, Perturbing the CUB ligand structure shifts an infrared mode that may be ascribed to the O-H stretch of bound water, This is sensitive to mutations of the glutamic acid, supporting its connectivity to the histidine, These results suggest key roles of bound mater, the glutamic acid and the histidine copper ligand in the mechanism of proton translocation. (C) 1997 Federation of European Biochemical Societies.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 24 条
[1]   CYTOCHROME-OXIDASE (A3) HEME AND COPPER OBSERVED BY LOW-TEMPERATURE FOURIER-TRANSFORM INFRARED-SPECTROSCOPY OF THE CO COMPLEX [J].
ALBEN, JO ;
MOH, PP ;
FIAMINGO, FG ;
ALTSCHULD, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (01) :234-237
[2]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[3]   POSSIBLE PROTON RELAY PATHWAYS IN CYTOCHROME-C-OXIDASE [J].
FETTER, JR ;
QIAN, J ;
SHAPLEIGH, J ;
THOMAS, JW ;
GARCIAHORSMAN, A ;
SCHMIDT, E ;
HOSLER, J ;
BABCOCK, GT ;
GENNIS, RB ;
FERGUSONMILLER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1604-1608
[4]  
Garcia AE, 1997, PROTEINS, V27, P471, DOI 10.1002/(SICI)1097-0134(199704)27:4<471::AID-PROT1>3.3.CO
[5]  
2-C
[6]  
GARCIAHORSMAN JA, 1995, BIOCHEMISTRY-US, V34, P4422
[7]   A statistical mechanical description of biomolecular hydration [J].
Hummer, G ;
Garcia, AE ;
Soumpasis, DM .
FARADAY DISCUSSIONS, 1996, 103 :175-189
[8]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF CYTOCHROME-C-OXIDASE FROM PARACOCCUS-DENITRIFICANS [J].
IWATA, S ;
OSTERMEIER, C ;
LUDWIG, B ;
MICHEL, H .
NATURE, 1995, 376 (6542) :660-669
[9]  
LEMIEUX LJ, 1992, J BIOL CHEM, V267, P2105
[10]  
MITCHELL DM, 1996, BIOCHEMISTRY-US, V35, P13093