Exploiting the co-evolution of interacting proteins to discover interaction specificity

被引:147
作者
Ramani, AK
Marcotte, EM [1 ]
机构
[1] Univ Texas, Inst Cellular & Mol Biol, Ctr Computat Biol & Bioinformat, Austin, TX 78712 USA
[2] Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
protein interactions; bioinformatics; phylogeny; co-evolution; interaction specificity;
D O I
10.1016/S0022-2836(03)00114-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein interactions are fundamental to the functioning of cells, and high throughput experimental and computational strategies are sought to map interactions. Predicting interaction specificity, such as matching members of a ligand family to specific members of a receptor family, is largely an unsolved problem. Here we show that by using evolutionary relationships within such families, it is possible to predict their physical interaction specificities. We introduce the computational method of matrix alignment for finding the optimal alignment between protein family similarity matrices. A second method, 3D embedding, allows visualization of interacting partners via spatial representation of the protein, families. These methods essentially align phylogenetic trees of interacting protein families to define specific interaction partners. Prediction accuracy depends strongly on phylogenetic tree complexity, as measured with information theoretic methods. These results, along with simulations of protein evolution, suggest a model for the evolution of interacting protein families in which interaction partners are duplicated in coupled processes. Using these methods, it is possible to successfully find protein interaction specificities, as demonstrated for >18 protein families. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 1978, Atlas of protein sequence and structure
[2]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL [J].
Bairoch, A ;
Apweller, R .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :31-36
[3]   Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1 [J].
Chambers, J ;
Ames, RS ;
Bergsma, D ;
Muir, A ;
Fitzgerald, LR ;
Hervieu, G ;
Dytko, GM ;
Foley, JJ ;
Martin, J ;
Liu, WS ;
Park, J ;
Ellis, C ;
Ganguly, S ;
Konchar, S ;
Cluderay, J ;
Leslie, R ;
Wilson, S ;
Sarau, HM .
NATURE, 1999, 400 (6741) :261-265
[4]   Conservation of gene order: a fingerprint of proteins that physically interact [J].
Dandekar, T ;
Snel, B ;
Huynen, M ;
Bork, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (09) :324-328
[5]   Protein interaction maps for complete genomes based on gene fusion events [J].
Enright, AJ ;
Iliopoulos, I ;
Kyrpides, NC ;
Ouzounis, CA .
NATURE, 1999, 402 (6757) :86-90
[6]  
FELSENSTEIN J, 1993, PHYLIP 3 5C PHYLOGEN
[7]   Evolutionary rate in the protein interaction network [J].
Fraser, HB ;
Hirsh, AE ;
Steinmetz, LM ;
Scharfe, C ;
Feldman, MW .
SCIENCE, 2002, 296 (5568) :750-752
[8]   The coevolution of gene family trees [J].
Fryxell, KJ .
TRENDS IN GENETICS, 1996, 12 (09) :364-369
[9]   Co-evolution of proteins with their interaction partners [J].
Goh, CS ;
Bogan, AA ;
Joachimiak, M ;
Walther, D ;
Cohen, FE .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (02) :283-293
[10]   Protein modelling for all [J].
Guex, N ;
Diemand, A ;
Peitsch, MC .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (09) :364-367