Evidence for a common step in three different processes for modulating the kinetic properties of glucocorticoid receptor-induced gene transcription

被引:39
作者
Chen, SY [1 ]
Sarlis, NJ [1 ]
Simons, SS [1 ]
机构
[1] NIDDKD, Steroid Hormones Sect, Mol & Cellular Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M005418200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dose-response curve of steroid hormones and the associated EC50 value are critical parameters both in the development of new pharmacologically active compounds and in the endocrine therapy of various disease states. We have recently described three different variables that can reposition the dose-response curve of agonist-bound glucocorticoid receptors (GRs): a 21-base pair sequence of the rat tyrosine aminotransferase gene called a glucocorticoid modulatory element (GME), GR concentration, and coactivator concentration, At the same time, each of these three components was found to influence the partial agonist activity of antiglucocorticoids. In an effort to determine whether these three processes proceed via independent pathways or a common intermediate, we have examined several mechanistic details. The effects of increasing concentrations of both GR and the coactivator TIF2 are found to be saturable. Furthermore, saturating levels of either GR or TIF2 inhibit the ability of each protein, and the GME, to affect further changes in the dose-response curve or partial agonist activity of antisteroids. This competitive inhibition suggests that all three modulators proceed through a common step involving a titratable factor. Support for this hypothesis comes from the observation that a fragment of the coactivator TIF2 retaining intrinsic transactivation activity is a dominant negative inhibitor of each component (GME, GR, and coactivator). This inhibition was not due to nonspecific effects on the general transcription machinery as the VP16 transactivation domain was inactive. The viral protein E1A also prevented the action of each of the three components in a manner that was independent of E1A's ability to block the histone acetyltransferase activity of CBP. Collectively, these results suggest that three different inputs (GME, GR, and coactivator) for perturbing the dose-response curve, and partial agonist activity, of GR-steroid complexes act by converging at a single step that involves a limiting factor prior to transcription initiation.
引用
收藏
页码:30106 / 30117
页数:12
相关论文
共 82 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]   REGULATION OF PROLACTIN PRODUCTION AND CELL-GROWTH BY ESTRADIOL - DIFFERENCE IN SENSITIVITY TO ESTRADIOL OCCURS AT LEVEL OF MESSENGER-RIBONUCLEIC-ACID ACCUMULATION [J].
AMARA, JF ;
VANITALLIE, C ;
DANNIES, PS .
ENDOCRINOLOGY, 1987, 120 (01) :264-271
[3]   AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer [J].
Anzick, SL ;
Kononen, J ;
Walker, RL ;
Azorsa, DO ;
Tanner, MM ;
Guan, XY ;
Sauter, G ;
Kallioniemi, OP ;
Trent, JM ;
Meltzer, PS .
SCIENCE, 1997, 277 (5328) :965-968
[4]   SPECIFIC CYTOPLASMIC GLUCOCORTICOID HORMONE RECEPTORS IN HEPATOMA TISSUE CULTURE CELLS [J].
BAXTER, JD ;
TOMKINS, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (05) :932-&
[5]   ROLE OF THE 2 ACTIVATING DOMAINS OF THE ESTROGEN-RECEPTOR IN THE CELL-TYPE AND PROMOTER-CONTEXT DEPENDENT AGONISTIC ACTIVITY OF THE ANTIESTROGEN 4-HYDROXYTAMOXIFEN [J].
BERRY, M ;
METZGER, D ;
CHAMBON, P .
EMBO JOURNAL, 1990, 9 (09) :2811-2818
[6]  
CHAKRABORTI PK, 1991, J BIOL CHEM, V266, P22075
[7]   A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J].
Chakravarti, D ;
Ogryzko, V ;
Kao, HY ;
Nash, A ;
Chen, HW ;
Nakatani, Y ;
Evans, RM .
CELL, 1999, 96 (03) :393-403
[8]   Role of CBP/P300 in nuclear receptor signalling [J].
Chakravarti, D ;
LaMorte, VJ ;
Nelson, MC ;
Nakajima, T ;
Schulman, IG ;
Juguilon, H ;
Montminy, M ;
Evans, RM .
NATURE, 1996, 383 (6595) :99-103
[9]   Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase [J].
Chen, HW ;
Lin, RJ ;
Xie, W ;
Wilpitz, D ;
Evans, RM .
CELL, 1999, 98 (05) :675-686
[10]   Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J].
Chen, HW ;
Lin, RJ ;
Schiltz, RL ;
Chakravarti, D ;
Nash, A ;
Nagy, L ;
Privalsky, ML ;
Nakatani, Y ;
Evans, RM .
CELL, 1997, 90 (03) :569-580