Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B

被引:183
作者
Ghany, Marc [1 ]
Liang, T. Jake [1 ]
机构
[1] NIDDKD, Liver Dis Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1053/j.gastro.2007.02.039
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Chronic hepatitis B continues to be a major cause of end-stage liver disease and hepatocellular carcinoma worldwide. Nucleos(t)ide analogues have proven to be effective in controlling the disease and perhaps decreasing the incidence of hepatocellular carcinoma. However, development of drug resistance is a major limitation to their long-term effectiveness. Understanding the mechanisms of drug resistance are important for designing new agents and devising strategies to manage and prevent the development of antiviral drug resistance. The development of resistance is determined by an interplay of viral, host, and drug characteristics Homology of the HBV polymerase to the human immunodeficiency virus-1 reverse transcriptase has allowed predictions to be made on the effect mutations have on HBV polymerase structure. In vitro functional studies provide complementary information. Several broad principles on the mechanism of resistance have emerged from these studies. First, most of the primary mutations cluster in the vicinity of the incoming nucleotide and act by directly affecting the position or stability of the bound substrate, template, or primer. In contrast, secondary mutations tend to occur away from the nucleotide-binding pocket. Finally, the structural and functional consequences of mutations are quite variable among the different agents. This paper reviews the key mutations and mechanisms associated with resistance to the nucleos(t)ide analogues approved for clinical use and discuss new targets for drug development.
引用
收藏
页码:1574 / 1585
页数:12
相关论文
共 71 条
[1]   Identification and characterization of mutations in hepatitis B virus resistant to lamivudine [J].
Allen, MI ;
Deslauriers, M ;
Andrews, CW ;
Tipples, GA ;
Walters, KA ;
Tyrrell, DLJ ;
Brown, N ;
Condreay, LD .
HEPATOLOGY, 1998, 27 (06) :1670-1677
[2]   Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase [J].
Angus, P ;
Vaughan, R ;
Xiong, S ;
Yang, HL ;
Delaney, W ;
Gibbs, C ;
Brosgart, C ;
Colledge, D ;
Edwards, R ;
Ayres, A ;
Bartholomeusz, A ;
Locarnini, S .
GASTROENTEROLOGY, 2003, 125 (02) :292-297
[3]   Serine and threonine residues bend α-helices in the χ1 = g- conformation [J].
Ballesteros, JA ;
Deupi, X ;
Olivella, M ;
Haaksma, EEJ ;
Pardo, L .
BIOPHYSICAL JOURNAL, 2000, 79 (05) :2754-2760
[4]  
Bartholomeusz A, 2004, HEPATOLOGY, V40, p246A
[5]  
Bartholomeusz A, 2004, ANTIVIR THER, V9, P149
[6]  
Bartholomeusz A, 2003, HEPATOLOGY, V38, p273A
[7]   Antiviral drug resistance: Clinical consequences and molecular aspects [J].
Bartholorneusz, A ;
Locarnini, SA .
SEMINARS IN LIVER DISEASE, 2006, 26 (02) :162-170
[8]   STRUCTURAL BASIS FOR THE 3'-5' EXONUCLEASE ACTIVITY OF ESCHERICHIA-COLI DNA-POLYMERASE-I - A 2 METAL-ION MECHANISM [J].
BEESE, LS ;
STEITZ, TA .
EMBO JOURNAL, 1991, 10 (01) :25-33
[9]   Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking [J].
Block, TM ;
Lu, XY ;
Mehta, AS ;
Blumberg, BS ;
Tennant, B ;
Ebling, M ;
Korba, B ;
Lansky, DM ;
Jacob, GS ;
Dwek, RA .
NATURE MEDICINE, 1998, 4 (05) :610-614
[10]  
Borroto-Esoda K, 2006, HEPATOLOGY, V44, p552A