Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes

被引:29
作者
Jankowski, S. [1 ]
Hiller, Martin M. [1 ,2 ]
Fromm, O. [2 ]
Winter, M. [2 ]
Wiemhoefer, H. -D. [1 ]
机构
[1] Univ Munster, Inst Inorgan & Analyt Chem, D-48149 Munster, Germany
[2] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, D-48149 Munster, Germany
关键词
lithium ion battery; gel polymer electrolyte; polyphosphazene; electrochemical stability; lithium transference number; metallic lithium anode; TRANSFERENCE NUMBERS; SOLID ELECTROLYTES; IN-SITU; BATTERIES; SALT; PERFORMANCE; LIQUID; CONDUCTIVITY;
D O I
10.1016/j.electacta.2014.12.123
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A detailed electrochemical study is presented of the lithium ion transport in polyphosphazene based gel polymer electrolytes. The polyphosphazene poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene (MEEP) was chosen for the polymeric network. In combination with liquid electrolytes (organic carbonates with lithium bis(oxalato) borate and lithium(hexafluoro) phosphate) gel polymer electrolyte membranes with very good ionic conductivities of 2.3 mScm(-1) at 30 degrees C and high lithium transference numbers of 0.31 at 90 degrees C were prepared. The investigated electrolytes exhibited very good interface stability at lithium metal electrodes during long term lithium plating/stripping experiments with up to 500 cycles. Discharge rate investigations on full cells consisting of lithium metal vertical bar MEEP gel polymer vertical bar LiFePO4 delivered high capacities of 140 mAhg(-1) at a discharge rate of 5 C. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 26 条
[1]   ''Living'' cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights [J].
Allcock, HR ;
Crane, CA ;
Morrissey, CT ;
Nelson, JM ;
Reeves, SD ;
Honeyman, CH ;
Manners, I .
MACROMOLECULES, 1996, 29 (24) :7740-7747
[2]   COMPLEX-FORMATION AND IONIC-CONDUCTIVITY OF POLYPHOSPHAZENE SOLID ELECTROLYTES [J].
BLONSKY, PM ;
SHRIVER, DF ;
AUSTIN, P ;
ALLCOCK, HR .
SOLID STATE IONICS, 1986, 18-9 (pt 1) :258-264
[3]  
BLONSKY PM, 1984, J AM CHEM SOC, V106, P6854, DOI 10.1021/ja00334a071
[4]   THERMAL-DECOMPOSITION OF POLY(ETHYLENE OXIDE), POLY(METHYL METHACRYLATE), AND THEIR MIXTURES BY THERMOGRAVIMETRIC METHOD [J].
CALAHORRA, E ;
CORTAZAR, M ;
GUZMAN, GM .
JOURNAL OF POLYMER SCIENCE PART C-POLYMER LETTERS, 1985, 23 (05) :257-260
[5]   Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes [J].
Christie, L ;
Christie, AM ;
Vincent, CA .
ELECTROCHIMICA ACTA, 1999, 44 (17) :2909-2913
[6]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[7]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328
[8]  
Grunebaum M., 2013, Patent DE, Patent No. [10 2013 004 204. 6, 1020130042046]
[9]   The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes [J].
Hiller, M. M. ;
Joost, M. ;
Gores, H. J. ;
Passerini, S. ;
Wiemhoefer, H. -D. .
ELECTROCHIMICA ACTA, 2013, 114 :21-29
[10]   Performance of polyphosphazene based gel polymer electrolytes in combination with lithium metal anodes [J].
Jankowski, S. ;
Hiller, M. M. ;
Stolina, R. ;
Wiemhoefer, H. -D. .
JOURNAL OF POWER SOURCES, 2015, 273 :574-579