Mixing time for a Markov chain on cladograms

被引:25
作者
Aldous, DJ [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
D O I
10.1017/S096354830000417X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A cladogram is a tree with labelled leaves and unlabelled degree-3 branchpoints. A certain Markov chain on the set of n-leaf cladograms consists of removing a random leaf (and its incident edge) and re-attaching it to a random edge. We show that the mixing time (time to approach the uniform stationary distribution) for this chain is at least O(n(2)) and at most O(n(3)).
引用
收藏
页码:191 / 204
页数:14
相关论文
共 21 条
[1]   SHUFFLING CARDS AND STOPPING-TIMES [J].
ALDOUS, D ;
DIACONIS, P .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) :333-348
[3]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[4]   SOME INEQUALITIES FOR REVERSIBLE MARKOV-CHAINS [J].
ALDOUS, DJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (JUN) :564-576
[5]  
[Anonymous], REVERSIBLE MARKOV CH
[6]  
[Anonymous], 1992, Combinatorics, Probability Computing
[7]  
BARKER D, LVB 1 0 RECONSTRUCTI
[8]  
Bayer D., 1992, Ann. Appl. Probab, V2, P294, DOI [10.1214/aoap/1177005705, DOI 10.1214/AOAP/1177005705]
[9]  
CHARLESTON MA, LANDSCAPE CHARACTERI
[10]  
Diaconis P., 1991, Ann. Appl. Probab., P36