The ATR pathway: Fine-tuning the fork

被引:199
作者
Paulsen, Renee D. [1 ]
Cimprich, Karlene A. [1 ]
机构
[1] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
关键词
DNA replication; ATR pathway; stalled replication forks;
D O I
10.1016/j.dnarep.2007.02.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The proper detection and repair of DNA damage is essential to the maintenance of genomic stability. The genome is particularly vulnerable during DNA replication, when endogenous and exogenous events can hinder replication fork progression. Stalled replication forks can fold into deleterious conformations and are also unstable structures that are prone to collapse or break. These events can lead to inappropriate processing of the DNA, ultimately resulting in genomic instability, chromosomal alterations and cancer. To cope with stalled replication forks, the cell relies on the replication checkpoint to block cell cycle progression, downregulate origin firing, stabilize the fork itself, and restart replication. The ATR (ATM and Rad3-related) kinase and its downstream effector kinase, Chk1, are central regulators of the replication checkpoint. Loss of these checkpoint proteins causes replication fork collapse and chromosomal rearrangements which may ultimately predispose affected individuals to cancer. This review summarizes our current understanding of how the ATR pathway recognizes and stabilizes stalled replication forks. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:953 / 966
页数:14
相关论文
共 125 条
[1]   ATR couples FANCD2 monoubiquitination to the DNA-damage response [J].
Andreassen, PR ;
D'Andrea, AD ;
Taniguchi, T .
GENES & DEVELOPMENT, 2004, 18 (16) :1958-1963
[2]   Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication [J].
Aparicio, OM ;
Stout, AM ;
Bell, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9130-9135
[3]   Common fragile sites as targets for chromosome rearrangements [J].
Arlt, Martin F. ;
Durkin, Sandra G. ;
Ragland, Ryan L. ;
Glover, Thomas W. .
DNA REPAIR, 2006, 5 (9-10) :1126-1135
[4]   BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function [J].
Arlt, MF ;
Xu, B ;
Durkin, SG ;
Casper, AM ;
Kastan, MB ;
Glover, TW .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (15) :6701-6709
[5]   Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome [J].
Arunkumar, AI ;
Klimovich, V ;
Jiang, XH ;
Ott, RD ;
Mizoue, L ;
Fanning, E ;
Chazin, WJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (04) :332-339
[6]   Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase [J].
Bachrati, Csanad Z. ;
Borts, Rhona H. ;
Hickson, Ian D. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (08) :2269-2279
[7]   ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation [J].
Ball, HL ;
Myers, JS ;
Cortez, D .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (05) :2372-2381
[8]   ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses [J].
Bao, SD ;
Tibbetts, RS ;
Brumbaugh, KM ;
Fang, YN ;
Richardson, DA ;
Ali, A ;
Chen, SM ;
Abraham, RT ;
Wang, XF .
NATURE, 2001, 411 (6840) :969-974
[9]   ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation [J].
Barr, SM ;
Leung, CG ;
Chang, EE ;
Cimprich, KA .
CURRENT BIOLOGY, 2003, 13 (12) :1047-1051
[10]   Mutational effect of fission yeast Polα on cell cycle events [J].
Bhaumik, D ;
Wang, TSF .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (08) :2107-2123