Multiple interactions between transmembrane helices generate the oligomeric α1b-adrenoceptor

被引:78
作者
Carrillo, JJ [1 ]
López-Giménez, JF [1 ]
Milligan, G [1 ]
机构
[1] Univ Glasgow, Mol Pharmacol Grp, Div Biochem & Mol Biol, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
10.1124/mol.104.001586
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Combinations of coimmunoprecipitation, single-cell fluorescence resonance energy transfer, and cell-surface time-resolved fluorescence resonance energy transfer demonstrated protein-protein interactions and quaternary structure for the alpha(1b)-adrenoceptor. Self-association of transmembrane domain 1 and its interaction with the full-length receptor indicated a symmetrical interface provided by this domain. Lack of effect of mutation of the glycophorin-A dimerization-like region within this helix demonstrated that this did not provide the molecular mechanism. Multiple interactions were observed between the alpha(1b)-adrenoceptor and fragments derived from its sequence. Fragments comprising transmembrane domains 3 and 4 and transmembrane domains 5 and 6, but not transmembrane domain 7, were also able to interact with the full-length receptor. Transmembrane domain 7 failed to interact significantly with any element of the receptor and was not transported to the cell surface after coexpression with the full-length receptor. Symmetrical interactions were also noted between fragments incorporating transmembrane domain 4, but this segment of the receptor failed to interact with transmembrane domains 1 and 2 or transmembrane domains 5 and 6. Time-resolved fluorescence resonance energy transfer studies were also consistent with contributions of transmembrane domains 1 and/or 2 and transmembrane domains 3 and/or 4 to protein-protein interactions within the quaternary structure of the alpha(1b)-adrenoceptor, and with a contribution of transmembrane domains 5 and/or 6. These data are consistent with a complex oligomeric quaternary structure of the alpha(1b)-adrenoceptor in which major, symmetrical interactions may define intradimeric contacts with other contributions, providing interdimer contacts to generate oligomeric complexes akin to those observed for murine rhodopsin. A model derived from this was developed.
引用
收藏
页码:1123 / 1137
页数:15
相关论文
共 47 条
[1]   Involvement of the amino terminus of the B2 receptor in agonist-induced receptor dimerization [J].
AbdAlla, S ;
Zaki, E ;
Lother, H ;
Quitterer, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26079-26084
[2]   Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) [J].
Angers, S ;
Salahpour, A ;
Joly, E ;
Hilairet, S ;
Chelsky, D ;
Dennis, M ;
Bouvier, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3684-3689
[3]   Dopamine D2 receptor dimer formation -: Evidence from ligand binding [J].
Armstrong, D ;
Strange, PG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22621-22629
[4]   Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer [J].
Ayoub, MA ;
Couturier, C ;
Lucas-Meunier, E ;
Angers, S ;
Fossier, P ;
Bouvier, M ;
Jockers, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21522-21528
[5]   Structure-based analysis of GPCR function:: Evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein [J].
Banères, JL ;
Parello, J .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (04) :815-829
[6]   Adenosine A2A-dopamine D2 receptor-receptor heteromerization -: Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer [J].
Canals, M ;
Marcellino, D ;
Fanelli, F ;
Ciruela, F ;
de Benedetti, P ;
Goldberg, SR ;
Neve, K ;
Fuxe, K ;
Agnati, LF ;
Woods, AS ;
Ferré, S ;
Lluis, C ;
Bouvier, M ;
Franco, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :46741-46749
[7]   Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins [J].
Carrillo, JJ ;
Pediani, J ;
Milligan, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :42578-42587
[8]   Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer [J].
Cheng, ZJ ;
Miller, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48040-48047
[9]   Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human α1A-adrenoceptors [J].
Cogé, F ;
Guenin, SP ;
Renouard-Try, A ;
Rique, H ;
Ouvry, C ;
Fabry, N ;
Beauverger, P ;
Nicolas, JP ;
Galizzi, JP ;
Boutin, JA ;
Canet, E .
BIOCHEMICAL JOURNAL, 1999, 343 :231-239
[10]   Dimerization of the delta opioid receptor: Implication for a role in receptor internalization [J].
Cvejic, S ;
Devi, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (43) :26959-26964