Peptide-Silica Hybrid Networks: Biomimetic Control of Network Mechanical Behavior

被引:64
作者
Altunbas, Aysegul [1 ]
Sharma, Nikhil [1 ]
Lamm, Matthew S. [1 ]
Yan, Congqi [1 ]
Nagarkar, Radhika P. [2 ]
Schneider, Joel P. [2 ]
Pochan, Darrin J. [1 ]
机构
[1] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
关键词
self-assembly; peptide; template; sol-gel; hybrid materials; BETA-SHEET FIBRILS; DESIGNED PEPTIDE; NANOPARTICLE ARRAYS; HYDROGELS; POLYMERIZATION; CHEMISTRY; DIATOMS; BIOSILICIFICATION; NANOSTRUCTURES; NANOTAPES;
D O I
10.1021/nn901226h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach toward biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. The peptides MAX1 and MAX8 used herein form networks consisting of Interconnected, self-assembled P-sheet fibrils, We report a study on the structure-property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol-gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol-gel process. The physical characterization of the hybrid networks via electron microscopy and small-angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 47 条
[1]   Skeleton of Euplectella sp.:: Structural hierarchy from the nanoscale to the macroscale [J].
Aizenberg, J ;
Weaver, JC ;
Thanawala, MS ;
Sundar, VC ;
Morse, DE ;
Fratzl, P .
SCIENCE, 2005, 309 (5732) :275-278
[2]  
[Anonymous], 1982, SMALL ANGLE XRAY SCA
[3]   Sphere, cylinder, and vesicle nanoaggregates in poly (styrene-b-isoprene) diblock copolymer solutions [J].
Bang, J ;
Jain, SM ;
Li, ZB ;
Lodge, TP ;
Pedersen, JS ;
Kesselman, E ;
Talmon, Y .
MACROMOLECULES, 2006, 39 (03) :1199-1208
[4]   Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels [J].
Branco, Monica C. ;
Pochan, Darrin J. ;
Wagner, Norman J. ;
Schneider, Joel P. .
BIOMATERIALS, 2009, 30 (07) :1339-1347
[5]   Biomimetic synthesis of ordered silica structures mediated by block copolypeptides [J].
Cha, JN ;
Stucky, GD ;
Morse, DE ;
Deming, TJ .
NATURE, 2000, 403 (6767) :289-292
[6]   Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro [J].
Cha, JN ;
Shimizu, K ;
Zhou, Y ;
Christiansen, SC ;
Chmelka, BF ;
Stucky, GD ;
Morse, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :361-365
[7]   Biogenic silica patterning: Simple chemistry or subtle biology? [J].
Coradin, T ;
Lopez, PJ .
CHEMBIOCHEM, 2003, 4 (04) :251-259
[8]  
Del Amo Y, 1999, J PHYCOL, V35, P1162
[9]   Amine-catalyzed biomimetic hydrolysis and condensation of organosilicate [J].
Delak, KM ;
Sahai, N .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3221-3227
[10]  
Dujardin E, 2002, ADV MATER, V14, P775, DOI 10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO