Pareto density estimation: A density estimation for knowledge discovery

被引:41
作者
Ultsch, A [1 ]
机构
[1] Univ Marburg, Databion Res Grp, D-35032 Marburg, Germany
来源
INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS | 2005年
关键词
D O I
10.1007/3-540-26981-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for data containing clusters of Gaussian structure. The behavior of the method is demonstrated with respect to cluster overlap, number of clusters, different variances in different clusters and application to high dimensional data. For high dimensional data PDE is found to be appropriate for the purpose of cluster analysis. The method is tested successfully on a difficult high dimensional real world problem: stock picking in falling markets.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1992, MULTIVARIATE DENSITY
[2]  
[Anonymous], P 4 INT C KNOWL DISC
[3]  
[Anonymous], 1996, P AAAI INT C KNOWL D
[4]  
DEBOECK GJ, 2002, NEURAL NETWORKS WORL, V10, P203
[5]  
Devroye L, 1996, ANN STAT, V24, P2499
[6]  
Devroye L, 1997, ANN STAT, V25, P2626
[7]  
DEVROYE L, 2000, HIGH DIMENSIONAL PRO
[8]   ON GLOBAL PROPERTIES OF VARIABLE BANDWIDTH DENSITY ESTIMATORS [J].
HALL, P .
ANNALS OF STATISTICS, 1992, 20 (02) :762-778
[9]  
MARANJIAN S, 2002, BEST NUMBER STOCKS, P26
[10]  
ONEIL WJ, 1995, MAKE MONEY STOCKS