Electrochemical synthesis of α-MnO2 octahedral molecular sieve

被引:23
作者
Liao, MY
Lin, JM
Wang, JH
Yang, CT
Chou, TL
Mok, BH
Chong, NS
Tang, HY [1 ]
机构
[1] Natl Chi Nan Univ, Dept Appl Chem, Puli 545, Nantou, Taiwan
[2] Natl Tsing Hua Univ, Ctr Mat Sci, Hsinchu 300, Taiwan
[3] Middle Tennessee State Univ, Dept Chem, Murfreesboro, TN 37132 USA
关键词
hollandite; molecular sieve; manganese oxide; self-assembly; electrochemical synthesis;
D O I
10.1016/S1388-2481(03)00054-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The alpha-MnO2, octahedral molecular sieve (OMS) with 2 x 2 hollandite-type structure can be electrochemically synthesized with a subsequent self-assembly process at 80degreesC. Powdery OMS material is prepared by the electrochemical oxidation of Mn2+ ion in an acidic medium followed by a hydrolysis reaction. Counter ion effects of H+, Li+, Na+, K+, Cs+ and Mg+2 are studied for the formation of alpha-MnO2 in this self-assembled system. Powder X-ray diffraction (XRD) is used to characterize the relationships among counter ions, electrolysis potential, and phase formation during synthesis. Li-7 nuclear magnetic resonance is used to probe the lithium environment in the hollandite-type structure of the Li+-exchanged and lithiated manganese oxides. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:312 / 316
页数:5
相关论文
共 20 条
[1]   ELECTROCHEMICAL AND NEUTRON-DIFFRACTION STUDY OF A PRELITHIATED HOLLANDITE-TYPE LIXMNO2 PHASE [J].
BOTKOVITZ, P ;
BREC, R ;
DENIARD, P ;
TOURNOUX, M ;
BURR, G .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1994, 244 :233-238
[2]   Manganese oxide porous crystals [J].
Feng, Q ;
Kanoh, H ;
Ooi, K .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (02) :319-333
[3]   Supertransferred hyperfine fields at 7Li:: Variable temperature 7Li NMR studies of LiMn2O4-based spinels [J].
Gee, B ;
Horne, CR ;
Cairns, EJ ;
Reimer, JA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (50) :10142-10149
[4]   Electrochemical and multinuclear solid-state NMR studies of tin composite oxide glasses as anodes for Li ion batteries [J].
Goward, GR ;
Nazar, LF ;
Power, WP .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (05) :1241-1249
[5]   Nanostructured lithium manganese oxide cathodes obtained by reducing lithium permanganate with methanol [J].
Im, D ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1001-A1007
[6]   Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteries [J].
Johnson, CS ;
Mansuetto, MF ;
Thackeray, MM ;
Shao-Horn, Y ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (07) :2279-2283
[7]   Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode [J].
Lee, HY ;
Kim, SW ;
Lee, HY .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (03) :A19-A22
[8]   6Li and 7Li MAS NMR studies of lithium manganate cathode materials [J].
Lee, YJ ;
Wang, F ;
Grey, CP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (48) :12601-12613
[9]   Local electronic structure of LiMn2O4 probed by solid state 7Li-NMR [J].
Liao, MY ;
Tang, HY ;
Chiu, YD ;
Huan, JC ;
Wu, MK .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (9-10) :1893-1898
[10]   Transferred hyperfine interaction and structure in LiMn2O4 and Li2MnO3 coexisting phases: A XRD and Li-7 NMR-MAS study [J].
Mustarelli, P ;
Massarotti, V ;
Bini, M ;
Capsoni, D .
PHYSICAL REVIEW B, 1997, 55 (18) :12018-12024