Changes of the topological charge of vortices

被引:13
作者
Damski, B [1 ]
Sacha, K [1 ]
机构
[1] Jagiellonian Univ, Inst Fiz Imienia Mariana Smoluchowskiego, PL-30059 Krakow, Poland
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 09期
关键词
D O I
10.1088/0305-4470/36/9/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider changes of the topological charge of vortices in quantum mechanics by investigating analytical examples where the creation or annihilation of vortices occurs. In classical hydrodynamics of non-viscous fluids the Helmholtz-Kelvin theorem ensures that the velocity field circulation is conserved. We discuss applicability of the theorem in the hydrodynamical formulation of quantum mechanics showing that the assumptions of the theorem may be broken in the quantum evolution of the wavefunction leading to a change of the topological charge.
引用
收藏
页码:2339 / 2345
页数:7
相关论文
共 20 条
[1]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[2]   QUANTIZATION OF MACROSCOPIC MOTIONS AND HYDRODYNAMICS OF ROTATING HELIUM .2. [J].
ANDRONIKASHVILI, EL ;
MAMALADZE, YG .
REVIEWS OF MODERN PHYSICS, 1966, 38 (04) :567-+
[3]   Motion of vortex lines in quantum mechanics [J].
Bialynicki-Birula, I ;
Bialynicka-Birula, Z ;
Sliwa, C .
PHYSICAL REVIEW A, 2000, 61 (03) :7
[4]  
BIALYNICKIBIRUL.I, 1992, THEORY QUANTA
[5]   Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference [J].
Bolda, EL ;
Walls, DF .
PHYSICAL REVIEW LETTERS, 1998, 81 (25) :5477-5480
[6]   TRANSVERSE LASER PATTERNS .1. PHASE SINGULARITY CRYSTALS [J].
BRAMBILLA, M ;
BATTIPEDE, F ;
LUGIATO, LA ;
PENNA, V ;
PRATI, F ;
TAMM, C ;
WEISS, CO .
PHYSICAL REVIEW A, 1991, 43 (09) :5090-5113
[7]  
Cohen-Tannoudji J. D.-R. C., 1992, ATOM PHOTON INTERACT
[8]   OPTICAL VORTICES [J].
COULLET, P ;
GIL, L ;
ROCCA, F .
OPTICS COMMUNICATIONS, 1989, 73 (05) :403-408
[9]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[10]  
Feynman R. P., 1972, STAT MECH