Defect chemistry of langasite III: Predictions of electrical and gravimetric properties and application to operation of high temperature crystal microbalance

被引:22
作者
Seh, Huankiat [1 ]
Fritze, Holger
Tuller, Harry L.
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Univ Appl Studies & Res, Dept Comp Sci & Automat, D-38855 Wernigerode, Germany
基金
美国国家科学基金会;
关键词
resonator; defect equilibria; mixed ionic-electronic conductor;
D O I
10.1007/s10832-007-9016-7
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electrical and gravimetric properties of langasite, La3Ga5SiO14, are related to its underlying defect and transport processes via previously developed predictive defect and transport models. These models are used here to calculate the dependence of the partial ionic and electronic conductivities and the mass change for langasite as functions of temperature, dopant type and level and pO(2). Doping strategies devised for minimizing conductivity in langasite based on use conditions are described. For example, the required dopant level to achieve minimum conductivity and thus minimum electrical losses in acceptor-doped langasite is shown to depend on the operating pO(2). Likewise intrinsic mass changes in langasite, dependent on dopant level, pO(2) and temperatures, if high enough, can mask mass changes induced in active layers applied to langasite when used as a microbalance. For example, the model predicts that the dopant level in donor-doped langasite has less of an impact on intrinsic mass change due to external environmental changes when compared to acceptor-doped langasite. The models are also applied in defining acceptable operating limits needed to achieve and/or the design of properties for desired levels of microbalance resolution and sensitivity.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 15 条
[1]  
CUNHA MPD, 2003, ELECTRON LETT, V39, P818
[2]   High temperature bulk acoustic wave properties of langasite [J].
Fritze, H ;
Schneider, O ;
Seh, H ;
Tuller, HL ;
Borchardt, G .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (23) :5207-5214
[3]   High temperature nanobalance sensor based on langasite [J].
Fritze, H ;
Tuller, HL ;
Seh, H ;
Borchardt, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 76 (1-3) :103-107
[4]   High temperature piezoelectric materials: Defect chemistry and electro-mechanical properties [J].
Fritze, Holger .
JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) :625-630
[5]  
GOPEL W, 1994, SENSORS COMPREHENSIV, P211
[6]  
Hornstemer J., 1998, P IEEE FREQUENCY CON, P615
[7]   Langasite-type materials: From discovery to present state [J].
Mill, BV ;
Pisarevsky, YV .
PROCEEDINGS OF THE 2000 IEEE/EIA INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM & EXHIBITION, 2000, :133-144
[8]   VERWENDUNG VON SCHWINGQUARZEN ZUR WAGUNG DUNNER SCHICHTEN UND ZUR MIKROWAGUNG [J].
SAUERBREY, G .
ZEITSCHRIFT FUR PHYSIK, 1959, 155 (02) :206-222
[9]   Defects and transport in langasite I:: Acceptor-doped (La3Ga5SiO14) [J].
Seh, H ;
Tuller, HL .
JOURNAL OF ELECTROCERAMICS, 2006, 16 (02) :115-125
[10]   Defects and transport in langasite II:: Donor-doped (La3Ga4.75Nb0.25SiO14) [J].
Seh, H ;
Tuller, HL .
JOURNAL OF ELECTROCERAMICS, 2005, 15 (03) :193-202