Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies

被引:55
作者
Butt, YKC [1 ]
Lum, JHK [1 ]
Lo, SCL [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Kowloon, Hong Kong, Peoples R China
关键词
mammalian NOS antibodies; nitric oxide synthase; protein identification; proteomics;
D O I
10.1007/s00425-002-00926-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Several studies suggest that a mammalian-like nitric oxide synthase (NOS) exists in plants. Researchers have attempted to verify its presence using two approaches: (i) determination of NOS functional activity and (ii) probing with mammalian NOS antibodies. However, up to now, neither a NOS-like gene nor a protein has been found in plants. While there is still some controversy over whether the NOS functional activity seen is due to nitrate reductase, using the mammalian NOS antibodies in western blot analysis, several groups have reported the presence of immunoreactive protein bands in plant homogenates. Based on these results, immunohistochemical studies using these antibodies have also been used to localize NOS in plant tissues. However, plant NOS has never been positively identified or characterized. Thus, we used a proteomic approach to verify the identities of plant proteins that cross-reacted with the mammalian NOS antibodies. Proteins extracted from maize (Zea mays L.) embryonic axes were separated by two-dimensional gel electrophoresis and subjected to western blot analysis with the mammalian neuronal NOS and inducible NOS antibodies. Twenty immunoreactive protein spots recognized on a corresponding Coomassie blue-stained two-dimensional gel were subjected to tryptic digestion, followed by identification using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Fifteen proteins were successfully identified and they have described functions that are unrelated to NO metabolism. The remaining five proteins could not be identified. The amino acid sequences of these identified proteins and those used to raise the antibodies were aligned. However, no homologous region could be found. Our results demonstrate that the mammalian NOS antibodies recognize many NOS-unrelated plant proteins. Therefore, it is inappropriate to infer the presence of plant NOS using this immunological technique.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 16 条
  • [1] Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    Kaul, S
    Koo, HL
    Jenkins, J
    Rizzo, M
    Rooney, T
    Tallon, LJ
    Feldblyum, T
    Nierman, W
    Benito, MI
    Lin, XY
    Town, CD
    Venter, JC
    Fraser, CM
    Tabata, S
    Nakamura, Y
    Kaneko, T
    Sato, S
    Asamizu, E
    Kato, T
    Kotani, H
    Sasamoto, S
    Ecker, JR
    Theologis, A
    Federspiel, NA
    Palm, CJ
    Osborne, BI
    Shinn, P
    Conway, AB
    Vysotskaia, VS
    Dewar, K
    Conn, L
    Lenz, CA
    Kim, CJ
    Hansen, NF
    Liu, SX
    Buehler, E
    Altafi, H
    Sakano, H
    Dunn, P
    Lam, B
    Pham, PK
    Chao, Q
    Nguyen, M
    Yu, GX
    Chen, HM
    Southwick, A
    Lee, JM
    Miranda, M
    Toriumi, MJ
    Davis, RW
    [J]. NATURE, 2000, 408 (6814) : 796 - 815
  • [2] Localization of nitric-oxide synthase in plant peroxisomes
    Barroso, JB
    Corpas, FJ
    Carreras, A
    Sandalio, LM
    Valderrama, R
    Palma, JM
    Lupiáñez, JA
    del Río, LA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) : 36729 - 36733
  • [3] Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants
    Beligni, MV
    Lamattina, L
    [J]. PLANTA, 2000, 210 (02) : 215 - 221
  • [4] Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus
    Cueto, M
    HernandezPerera, O
    Martin, R
    Bentura, ML
    Rodrigo, J
    Lamas, S
    Golvano, MP
    [J]. FEBS LETTERS, 1996, 398 (2-3) : 159 - 164
  • [5] Innate immunity - Plants just say NO to pathogens
    Dangl, J
    [J]. NATURE, 1998, 394 (6693) : 525 - +
  • [6] Nitric oxide functions as a signal in plant disease resistance
    Delledonne, M
    Xia, YJ
    Dixon, RA
    Lamb, C
    [J]. NATURE, 1998, 394 (6693) : 585 - 588
  • [7] Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose
    Durner, J
    Wendehenne, D
    Klessig, DF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) : 10328 - 10333
  • [8] NO-releasing substances that induce growth elongation in maize root segments
    Gouvea, CMCP
    Souza, JF
    Magalhaes, ACN
    Martins, IS
    [J]. PLANT GROWTH REGULATION, 1997, 21 (03) : 183 - 187
  • [9] KUO WN, 1995, BIOCHEM ARCH, V11, P73
  • [10] Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus)
    Lum, HK
    Butt, YKC
    Lo, SCL
    [J]. NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2002, 6 (02): : 205 - 213