NFBD1, a novel nuclear protein with signature motifs of FRA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response

被引:72
作者
Shang, YL
Bodero, AJ
Chen, PL
机构
[1] Univ Texas, Ctr Hlth Sci, Dept Mol Med, San Antonio, TX 78245 USA
[2] Univ Texas, Ctr Hlth Sci, Inst Biotechnol, San Antonio, TX 78245 USA
关键词
D O I
10.1074/jbc.M210749200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Efficient repair of DNA double-strand breaks depends on the intact signaling cascade, comprising molecules involved in DNA damage signal pathways and checkpoints. Budding yeast Rad9 (scRad9) is required for activation of scRad53 (mammalian homolog Chk2) and transduction of the signal further downstream in this pathway. In the search for a mammalian homolog, three proteins in the human data base, including BRCA1, 53BP1, and nuclear factor with BRCT domains protein 1 (NFBD1), were found to share significant homology with the BRCT motifs of scRad9. Because BRCA1 and 53BP1 are involved in DNA damage responses, a similar role for NFBD1 was tested. We show that NFBD1 is a 250-kDa nuclear protein containing a forkhead-associated motif at its N terminus, two BRCT motifs at its C terminus, and 13 internal repetitions of a 41-amino acid sequence. Five minutes after gamma-irradiation, NFBD1 formed nuclear foci that colocalized with the phosphorylated form of H2AX and Chk2, two phosphorylation events known to be involved in early DNA damage response. NFBD1 foci are also detected in response to camptothecin, etoposide, and methylmethanesulfonate treatments. Deletion of the forkhead-associated motif or the internal repeats of NFBD1 has no effect on DNA damage-induced NFBD1 foci formation. Conversely, deletion of the BRCT motifs abrogates damage-induced NFBD1 foci. Ectopic expression of the BRCT motifs reduced damage-induced NFBD1 foci and compromised phosphorylated Chk2- and phosphorylated H2AX-containing foci. These results suggest that NFBD1, like BRCA1 and 53BP1, participates in the early response to DNA damage.
引用
收藏
页码:6323 / 6329
页数:7
相关论文
共 76 条
[1]  
Ahn JY, 2000, CANCER RES, V60, P5934
[2]   Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage [J].
Anderson, L ;
Henderson, C ;
Adachi, Y .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1719-1729
[3]   ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses [J].
Bao, SD ;
Tibbetts, RS ;
Brumbaugh, KM ;
Fang, YN ;
Richardson, DA ;
Ali, A ;
Chen, SM ;
Abraham, RT ;
Wang, XF .
NATURE, 2001, 411 (6840) :969-974
[4]   Mammalian G1- and S-phase checkpoints in response to DNA damage [J].
Bartek, J ;
Lukas, J .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (06) :738-747
[5]   A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins [J].
Bork, P ;
Hofmann, K ;
Bucher, P ;
Neuwald, AF ;
Altschul, SF ;
Koonin, EV .
FASEB JOURNAL, 1997, 11 (01) :68-76
[6]   A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage [J].
Brown, AL ;
Lee, CH ;
Schwarz, JK ;
Mitiku, N ;
Piwnica-Worms, H ;
Chung, JH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3745-3750
[7]   ATM phosphorylates histone H2AX in response to DNA double-strand breaks [J].
Burma, S ;
Chen, BP ;
Murphy, M ;
Kurimasa, A ;
Chen, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42462-42467
[8]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[9]   Genomic instability in mice lacking histone H2AX [J].
Celeste, A ;
Petersen, S ;
Romanienko, PJ ;
Fernandez-Capetillo, O ;
Chen, HT ;
Sedelnikova, OA ;
Reina-San-Martin, B ;
Coppola, V ;
Meffre, E ;
Difilippantonio, MJ ;
Redon, C ;
Pilch, DR ;
Olaru, A ;
Eckhaus, M ;
Camerini-Otero, RD ;
Tessarollo, L ;
Livak, F ;
Manova, K ;
Bonner, WM ;
Nussenzweig, MC ;
Nussenzweig, A .
SCIENCE, 2002, 296 (5569) :922-927
[10]   PHOSPHORYLATION OF THE RETINOBLASTOMA GENE-PRODUCT IS MODULATED DURING THE CELL-CYCLE AND CELLULAR-DIFFERENTIATION [J].
CHEN, PL ;
SCULLY, P ;
SHEW, JY ;
WANG, JYJ ;
LEE, WH .
CELL, 1989, 58 (06) :1193-1198