Modulation of NADP+-dependent isocitrate dehydrogenase in aging

被引:16
作者
Kil, IS
Lee, YS
Bae, YS
Huh, TL
Park, JW [1 ]
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Biochem, Taegu 702701, South Korea
[2] Kyungpook Natl Univ, Coll Nat Sci, Dept Genet Engn, Taegu 702701, South Korea
关键词
NADP(+)-dependent isocitrate dehydrogenase; aging; tissues;
D O I
10.1179/135100004225006056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichlorofluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 25 条
[1]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[2]   The free radical theory of aging matures [J].
Beckman, KB ;
Ames, BN .
PHYSIOLOGICAL REVIEWS, 1998, 78 (02) :547-581
[3]   Superoxide dismutase 1 knock-down induces senescence in human fibroblasts [J].
Blander, G ;
de Oliveira, RM ;
Conboy, CM ;
Haigis, M ;
Guarente, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38966-38969
[4]   A BIOMARKER THAT IDENTIFIES SENESCENT HUMAN-CELLS IN CULTURE AND IN AGING SKIN IN-VIVO [J].
DIMRI, GP ;
LEE, XH ;
BASILE, G ;
ACOSTA, M ;
SCOTT, C ;
ROSKELLEY, C ;
MEDRANO, EE ;
LINSKENS, M ;
RUBELJ, I ;
PEREIRASMITH, O ;
PEACOCKE, M ;
CAMPISI, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9363-9367
[5]   OXIDATIVE DAMAGE TO DNA DURING AGING - 8-HYDROXY-2'-DEOXYGUANOSINE IN RAT ORGAN DNA AND URINE [J].
FRAGA, CG ;
SHIGENAGA, MK ;
PARK, JW ;
DEGAN, P ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (12) :4533-4537
[6]   Antioxidant Function of Thioredoxin and Glutaredoxin Systems [J].
Holmgren, Arne .
ANTIOXIDANTS & REDOX SIGNALING, 2000, 2 (04) :811-U209
[7]   CLONING OF A CDNA-ENCODING BOVINE MITOCHONDRIAL NADP+-SPECIFIC ISOCITRATE DEHYDROGENASE AND STRUCTURAL COMPARISON WITH ITS ISOENZYMES FROM DIFFERENT SPECIES [J].
HUH, TL ;
RYU, JH ;
HUH, JW ;
SUNG, HC ;
OH, IU ;
SONG, BJ ;
VEECH, RL .
BIOCHEMICAL JOURNAL, 1993, 292 :705-710
[8]   PURIFICATION AND PROPERTIES OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE FROM THE CORPUS-LUTEUM [J].
JENNINGS, GT ;
SADLEIR, JW ;
STEVENSON, PM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1034 (02) :219-227
[9]   Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase [J].
Jo, SH ;
Son, MK ;
Koh, HJ ;
Lee, SM ;
Song, IH ;
Kim, YO ;
Lee, YS ;
Jeong, KS ;
Kim, WB ;
Park, JW ;
Song, BJ ;
Huhe, TL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16168-16176
[10]   INFLUENCES OF DIETARY RESTRICTION AND AGE ON LIVER-ENZYME ACTIVITIES AND LIPID-PEROXIDATION IN MICE [J].
KOIZUMI, A ;
WEINDRUCH, R ;
WALFORD, RL .
JOURNAL OF NUTRITION, 1987, 117 (02) :361-367